Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T03:51:54.208Z Has data issue: false hasContentIssue false

Ion channels of Fasciola hepatica incorporated into planar lipid bilayers

Published online by Cambridge University Press:  19 January 2004

J. H. JANG
Affiliation:
Laboratory of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, San 56-1 Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea
S. D. KIM
Affiliation:
Laboratory of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, San 56-1 Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea
J. B. PARK
Affiliation:
Department of Physiology, Chungnam National University College of Medicine, Taejeon 130-131, Republic of Korea
S. J. HONG
Affiliation:
Department of Parasitology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
P. D. RYU
Affiliation:
Laboratory of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, San 56-1 Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea

Abstract

Ion channels are important target sites of anthelmintics, but little is known about those in Fasciola hepatica. In this work, we applied a planar lipid bilayer technique to characterize the properties of single ion channels in F. hepatica. Under a 200/40 mM KCl gradient, a large conductance channel of 251 pS was observed in 18% of the membranes studied. The channel was selective to K+ over Cl with a permeability ratio of K+ to Cl (PK/PCl) of 4·9. Open state probability (Po) of the channel was less than 0·5 and dependent on voltage (−60~+40 mV) and Ca2+ (~100 μM). The other two types of single channels observed in 11 and 5% of membranes, respectively, were a K+-permeable channel of 80 pS (PK/PCl=4·6) and a Cl-permeable channel of 64 pS (PK/PCl=0·058). Open state probability of both channels showed little voltage dependence. The results indicate that distinct single channels of 60~251 pS are present in relative abundance and, in addition, that the planar lipid bilayer technique can be a useful tool for the study of single ion channels in F. hepatica.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BLAIR, K. L., DAY, T. A., LEWIS, M. C., BENNETT, J. L. & PAX, R. A. (1991). Studies on muscle cells isolated from Schistosoma mansoni: a Ca2+-dependent K+ channel. Parasitology 102, 251258.CrossRefGoogle Scholar
CHEN, M. G. & MOTT, K. E. (1990). Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Tropical Disease Bulletin 87, R1R38.Google Scholar
DAY, T. A., BENNETT, J. L. & PAX, R. A. (1992). Schistosoma mansoni: Patch-clamp study of a nonselective cation channel in the outer tegumental membrane of females. Experimental Parasitology 74, 348356.CrossRefGoogle Scholar
DAY, T. A., HAITHCOCK, J., KIMBER, M. & MAULE, A. G. (2000). Functional ryanodine receptor channels in flatworm muscle fibres. Parasitology 120, 417422.CrossRefGoogle Scholar
GROSMAN, C. & REISIN, I. L. (1995). Echinococcus granulosus: partial characterization of the conductive properties of two cation channels from protoscoleces of the ovine strain, reconstituted on planar lipid bilayers. Experimental Parasitology 81, 546555.CrossRefGoogle Scholar
GROSMAN, C. & REISIN, I. L. (1997). Interconverting gating modes of a nonselective cation channel from the tapeworm Echinococcus granulosus reconstituted on planar lipid bilayers. Journal of Membrane Biology 158, 8794.CrossRefGoogle Scholar
GUO, X., UEHARA, A., RAVINDRAN, A., BRYANT, S. H., HALL, S. & MOCZYDLOWSKI, E. (1987). Kinetic basis for insensitivity to tetrodotoxin and saxitoxin in sodium channels of canine heart and denervated rat skeletal muscle. Biochemistry 26, 75467556.CrossRefGoogle Scholar
KIM, E., DAY, T. A., BENNET, J. L. & PAX, R. A. (1995). Cloning and functional expression of a Shaker-related voltage-gated potassium channel gene from Schistosoma mansoni (Trematoda: Digenea). Parasitology 110, 171180.CrossRefGoogle Scholar
KIM, H. S., KAM, K. Y., RYU, P. D., HONG, S. J., JEON, J. S., JEON, B. H., KIM, K. J. & PARK, J. B. (2002). A gadolinium and PH-sensitive hyperpolarization-activated cation current in acutely isolated single neurons from Fasciola hepatica. Parasitology 125, 423430.Google Scholar
KOHN, A. B., LEA, J., ROBERTS-MISTERLY, J. M., ANDERSON, P. A. & GREENBERG, R. M. (2001 a). Structure of three high voltage-activated calcium channel alpha1 subunits from Schistosoma mansoni. Parasitology 123, 489497.Google Scholar
KOHN, A. B., ANDERSON, P. A., ROBERTS-MISTERLY, J. M. & GREENBERG, R. M. (2001 b). Schistosome calcium channel beta subunits. Unusual modulatory effects and potential role in the action of antischistosomal drug praziquantel. Journal of Biological Chemistry 276, 3687336876.Google Scholar
LABARCA, P. & LATORRE, R. (1992). Insertion of ion channels into planar lipid bilayers by vesicle fusion. Methods in Enzymology 207, 447463.CrossRefGoogle Scholar
LATORRE, R., OBERHAUSER, A., LABARCA, P. & ALBAREZ, O. (1989). Varieties of calcium-activated potassium channels. Anuual Review of Physiology 51, 385399.CrossRefGoogle Scholar
LOYACANO, A. F., WILLIAMS, J. C., GURIE, J. & DEROSA, A. A. (2002). Effect of gastrointestinal nematode and liver fluke infections on weight gain and reproductive performance of beef heifers. Veterinary Parasitology 107, 227234.CrossRefGoogle Scholar
MARTIN, R. J. (1997). Modes of action of anthelmintic drugs. Veterinary Journal 154, 1134.CrossRefGoogle Scholar
MARTIN, R. J., ROBERTSON, A. P. & BJON, H. (1997). Target sites of anthelmintics. Parasitology 114, S111S124.Google Scholar
MAS-COMA, M. S., ESTEBAN, J. G. & BARQUES, M. D. (1999). Epidemiology of human fascioliasis: a review and proposed new classification. Bulletin of the World Health Organization 77, 340346.Google Scholar
PAX, R. A., DAY, T. A., MILLER, C. L. & BENNETT, J. L. (1996). Neuromuscular physiology and pharmacology of parasitic flatworms. Parasitology 113 (Suppl.), S83S96.CrossRefGoogle Scholar
ROBERTSON, A. P., MARTIN, R. J. & KUSEL, J. R. (1997). A vesicle preparation for resolving single-channel currents in tegument of male Schistosoma mansoni. Parasitology 115, 183192.CrossRefGoogle Scholar
SILVA, C. L., CUNHA, V. M., MENDONCA-SILVA, D. L. & NOEL, F. (1998). Evidence for ryanodine receptors in Schistosoma mansoni. Biochemical Pharmacology 56, 9971003.CrossRefGoogle Scholar
SUKHDEO, S. C., SUKHDEO, M. V. K. & METTRICK, D. F. (1988). Neurocytology of the cerebral ganglion of Fasciola hepatica (Platyhelminthes). Journal of Comparative Neurology 278, 337343.CrossRefGoogle Scholar