Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:57:08.980Z Has data issue: false hasContentIssue false

Lack of immunological cross-reactivity between parasite-derived and recombinant forms of ES-62, a secreted protein of Acanthocheilonema viteae

Published online by Cambridge University Press:  11 October 2005

C. A. EGAN
Affiliation:
Department of Immunology, University of Strathclyde, Glasgow G4 0NR, UK
K. M. HOUSTON
Affiliation:
Department of Immunology, University of Strathclyde, Glasgow G4 0NR, UK
M. J. C. ALCOCER
Affiliation:
Division of Nutritional Sciences, University of Nottingham, Loughborough LE12 5RD, UK
A. SOLOVYOVA
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow G12 8QQ, UK
R. TATE
Affiliation:
Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G4 0NR, UK
G. LOCHNIT
Affiliation:
Institute of Biochemistry, University of Giessen, Giessen D35392, Germany
I. B. McINNES
Affiliation:
Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
M. M. HARNETT
Affiliation:
Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
R. GEYER
Affiliation:
Institute of Biochemistry, University of Giessen, Giessen D35392, Germany
O. BYRON
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow G12 8QQ, UK
W. HARNETT
Affiliation:
Department of Immunology, University of Strathclyde, Glasgow G4 0NR, UK

Abstract

The longevity of filarial nematodes is dependent on secreted immunomodulatory products. Previous investigation of one such product, ES-62, has suggested a critical role for post-translationally attached phosphorylcholine (PC) moieties. In order to further investigate this, ES-62 lacking PC was produced, using the Pichia pastoris recombinant gene expression system. Unlike parasite-derived ES-62, which is tetrameric the recombinant material was found to consist of a mixture of apparently stable tetramers, dimers and monomers. Nevertheless, the recombinant protein was considered to be an adequate PC-free ES-62 as it was recognized by existing antisera against the parasite-derived protein. However, subsequent to this, recognition of parasite-derived ES-62 by antibodies produced against the recombinant protein was found to be absent. In an attempt to explain this, recombinant ES-62 was subjected to structural analysis and was found to (i) contain 3 changes in amino acid composition; (ii) demonstrate significant alterations in glycosylation; (iii) show major differences in protein secondary structure. The effects of these alterations in relation to the observed change in immunogenicity were investigated and are discussed. The data presented clearly show that recognition by existing antibodies is insufficient proof that recombinant proteins can be used to mimic parasite-derived material in studies on nematode immunology and vaccination.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerman, C. J., Harnett, M. M., Harnett, W., Kelly, S., Svergun, D. I. and Byron, O. ( 2003). 19 Å solution structure of the filarial nematode immunomodulatory protein, ES-62. Biophysical Journal 84, 489500.CrossRefGoogle Scholar
Alcocer, M. J., Murtagh, G. J., Bailey, K., Dumoulin, M., Meseguer, A. S., Parker, M. J. and Archer, D. B. ( 2002). The disulphide mapping, folding and characterisation of recombinant Ber e 1 and SFA-8, two sulphur-rich 2S plant albumin allergens. Journal of Molecular Biology 324, 165175.CrossRefGoogle Scholar
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. ( 2001). Current Protocols in Molecular Biology, John Wiley and Sons, New York, USA.
Chen, Z. and Ruffner, D. E. ( 1998). Amplification of closed circular DNA in vitro. Nucleic Acids Research 26, 11261127.CrossRefGoogle Scholar
Durchschlag, H. ( 1986). Specific volumes of biological macromolecules and some other molecules of biological interest. In Thermodynamic Data for Biochemistry and Biotechnology ( ed. Hinz, H.-J.), pp. 45128. Springer Verlag, Berlin-Heidelberg-NewYork-Tokyo.CrossRef
Geyer, R., Geyer, H., Kühnhardt, S., Mink, W. and Stirm, S. ( 1982). Capillary gas-chromatography of methylhexitol acetates obtained upon methylation of N-glycosidically linked glycoprotein oligosaccharides. Annals of Biochemistry 121, 263274.CrossRefGoogle Scholar
Goodridge, H. S., Deehan, M. R., Harnett, W. and Harnett, M. M. ( 2005). Subversion of immunological signalling by a filarial nematode phosphorylcholine-containing secreted product. Cellular Signalling 17, 1116.CrossRefGoogle Scholar
Goodridge, H. S., Marshall, F. A., Wilson, E. H., Houston, K. M., Liew, F. Y., Harnett, M. M. and Harnett, W. ( 2004). In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing filarial nematode glycoprotein ES-62 polarizes their differentiation to an anti-inflammatory phenotype. Immunology 113, 491498.CrossRefGoogle Scholar
Grinna, L. S. and Tschopp, J. F. ( 1989). Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast 5, 107115.CrossRefGoogle Scholar
Harnett, W., Deehan, M. R., Houston, K. M. and Harnett, M. M. ( 1999). Immunomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein. Parasite Immunology 21, 601608.CrossRefGoogle Scholar
Harnett, W. and Harnett, M. M. ( 1993). Inhibition of murine B cell proliferation and down-regulation of protein kinase C levels by a phosphorylcholine-containing filarial excretory-secretory product. Journal of Immunology 151, 48294837.Google Scholar
Harnett, W. and Harnett, M. M. ( 2001). Modulation of the host immune system by phosphorylcholine-containing glycoproteins secreted by parasitic filarial nematodes. Biochimica et Biophysica Acta. 1539, 715.CrossRefGoogle Scholar
Harnett, W., Harnett, M. M. and Byron, O. ( 2003). Structural/functional aspects of ES-62-a secreted immunomodulatory phosphorylcholine-containing filarial nematode glycoprotein. Current Protein and Peptide Science 4, 5971.CrossRefGoogle Scholar
Harnett, W. Houston, K. M., Amess, R. and Worms, M. J. ( 1993). Acanthocheilonema viteae: phosphorylcholine is attached to the major excretory-secretory product via an N-linked glycan. Experimental Parasitology 77, 498502.CrossRefGoogle Scholar
Harnett, W. and Parkhouse, R. M. E. ( 1995). Perspectives in Nematode Physiology and Biochemistry ( ed. Sood, M. L.), pp. 207242. M/S Narendra Publication House, New Delhi.
Harnett, W., Worms, M. J., Kapil, A., Grainger, M. and Parkhouse, R. M. E. ( 1989). Origin, kinetics of circulation and fate in vivo of the major excretory-secretory product of Acanthocheilonema viteae. Parasitology 99, 229239.CrossRefGoogle Scholar
Haslam, S. M., Khoo, K. H., Houston, K. M., Harnett, W., Morris, H. R. and Dell, A. ( 1997). Characterisation of the phosphorylcholine-containing N-linked oligosaccharides in the excretory-secretory 62 kDa glycoprotein of Acanthocheilonema viteae. Molecular and Biochemical Parasitology 85, 5366.CrossRefGoogle Scholar
Hennessey, J. P. J. and Johnson, W. C. JR. ( 1981). Information content in the circular dichroism of proteins. Biochemistry 20, 10851094.CrossRefGoogle Scholar
Houston, K. M. and Harnett, W. ( 1999 a). Attatchment of phosphorylcholine to a nematode glycoprotein Trends in GlycoScience and Glycotechnology 11, 4352.Google Scholar
Houston, K. M. and Harnett, W. ( 1999 b). Mechanisms underlying the transfer of phosphorylcholine to filarial nematode glycoproteins – a possible role for choline kinase. Parasitology 118, 311318.Google Scholar
Houston, K. M., Cushley, W. and Harnett, W. ( 1997). Studies on the site and mechanism of attachment of phosphorylcholine to a filarial nematode secreted glycoprotein. Journal of Biological Chemistry 272, 15271533.CrossRefGoogle Scholar
Houston, K. M., Wilson, E. H., Eyres, L., Brombacher, F., Harnett, M. M., Alexander, J. and Harnett, W. ( 2000). Presence of phosphorylcholine on a filarial nematode protein influences immunoglobulin G subclass response to the molecule by an interleukin-10-dependent mechanism. Infection and Immunity 68, 54665468.CrossRefGoogle Scholar
Kurniawan, A., Yazdanbakhsh, M., Van Ree, R., Aalberse, R., Selkirk, M. E., Partono, F. and Maizels, R. M. ( 1993). Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. Journal of Immunology 150, 39413950.Google Scholar
Johnson, M., Correia, J. J., Yphantis, D. A. and Halvorsen, H. ( 1981). Analysis of data from the analytical ultracentrifuge by nonlinear least square techniques. Biophysical Journal 36, 575588.CrossRefGoogle Scholar
Lamm, O. ( 1929). Die Differentialgleichung der Ultrazentrifugierung. Arkiv för Matematik, Astronomi och Fysik 21B, 14.Google Scholar
Laue, T. M., Shah, B. D., Ridgeway, T. M. and Pelletier, S. ( 1992). Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science ( ed. Harding, S. E., Rowe, A. J. and Horton, J. C.), pp. 90125. Redwood Press Ltd, Melksham.
Lawrence, R. A. ( 2001). Immunity to filarial nematodes. Veterinary Parasitology 100, 3344.CrossRefGoogle Scholar
Maizels, R. M., Blaxter, M. L. and Scott, A. L. ( 2001). Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunology 23, 327344.CrossRefGoogle Scholar
Ottesen, E. A., Skvaril, F., Tripathy, S. P., Poindexter, R. W. and Hussain, R. ( 1985). Prominence of IgG4 in the IgG antibody response to human filariasis. Journal of Immunology 134, 27072712.Google Scholar
Provencher, S. W. and Glockner, J. ( 1981). Estimation of globular protein secondary structure from circular dichroism. Biochemistry 6, 3337.CrossRefGoogle Scholar
Schuck, P. ( 1998). Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophysical Journal 75, 15031512.CrossRefGoogle Scholar
Schuck, P. ( 2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophysical Journal 78, 16061619.CrossRefGoogle Scholar
Schuck, P. ( 2004). Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Analytical Biochemistry 326, 234256.Google Scholar
Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J. and Schubert, D. ( 2002). Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophysical Journal 82, 10961111.CrossRefGoogle Scholar
Sreerama, N. and Woody, R. W. ( 1993). A self-consistent method for the analysis of protein secondary structure from circular dichroism. Analytical Biochemistry 209, 3244.CrossRefGoogle Scholar
Stepek, G., Auchie, M., Tate, R., Watson, K., Russell, D. G., Devaney, E. and Harnett, W. ( 2002). Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES-62, is stage specific. Parasitology 125, 155164.Google Scholar
Subramanian, S., Stolk, W. A., Ramaiah, K. D., Plaisier, A. P., Krishnamoorthy, K., van Oortessen, G. J., Dominic Amalraj, D., Habbema, J. D. and Das, P. K. ( 2004). The dynamics of Wuchereria bancrofti infection: a model-based analysis of longitudinal data from Pondicherry, India. Parasitology 128, 467483.CrossRefGoogle Scholar
Volkov, V. V. and Svergun, D. I. ( 2003). Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography 36, 860864.CrossRefGoogle Scholar
Whitmore, L. and Wallace, B. A. ( 2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research 32, W668W673.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION ( 1997). Prospects for the elimination of some TDR diseases. World Health Organization, Geneva.
Wilson, E. H., Deehan, M. R., Katz, E., Brown, K. S., Houston, K. M., Orquote Grady, J., Harnett, M. M. and Harnett, W. ( 2003). Hyporesponsiveness of murine B lymphocytes exposed to the filarial nematode secreted product ES-62 in vivo. Immunology 109, 238245.CrossRefGoogle Scholar
Yphantis, D. A. ( 1960). Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3, 297317.Google Scholar