Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:33:28.214Z Has data issue: false hasContentIssue false

Malaria-a neglected disease?

Published online by Cambridge University Press:  06 April 2009

K. Marsh
Affiliation:
Nuffield Department of Clinical Medicine, John Radcliffe, Hospital Oxford and The Kenya Medical Research Institute, P.O. Box 230, Kilifi, Kenya

Summary

In situations where malaria eradication is not an option in the foreseeable future the emphasis must be on the control of morbidity and mortality due to malaria. Under such circumstances drawing a distinction between malarial parasitization and malarial disease may be important for workers in both field and laboratory. This concept is explored from the points of view of the epidemiological picture of malaria in endemic populations, the factors which may influence progression to disease and the processes which mediate disease.

Type
Malaria
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Iseki, M., Barnwell, J. W., Taylor, D., Oo, M. M. & Howard, R. J. (1990). The pathology of human cerebral malaria. American Journal of Tropical Medicine and Hygiene 43 (Suppl.), 30–7.Google Scholar
Alonso, P. L., Lindsay, S. W., Armstrong, J. R. M., Conteh, M., Hill, A. G., David, P. H., Fegan, G., DEFrancisco, A., Hall, A. J., Shenton, F. C., Cham, K. & Greenwood, B. M. (1991). The effect of insecticidetreated bed nets on mortality of Gambian children. Lancet 337, 1499–502.CrossRefGoogle ScholarPubMed
Anders, R. F. (1986). Multiple cross reactivities amongst antigens of Plasmodium falciparuin impair the development of protective immunity against malaria. Parasite Immunology 8, 529–39.CrossRefGoogle ScholarPubMed
Anders, R. F. & Smythe, J. A. (1989). Polymorphic antigens in Plasmodium falciparum. Blood 74, 1865–75.Google Scholar
Bagster-Wilson, D. (1938). Implications of malarial endemicity in E. Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 22, 435–65.Google Scholar
Barnwell, J. W., Asch, A. S., Nachman, R. L., Yamaya, M., Aikawa, M. & Ingravallo, P. (1989). A human 88 kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. Journal of Clinical Investigation 84, 705–72.Google Scholar
Barnwell, J. W., Ockenhouse, C. F. & Knowles, D. M. (1985). Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum infected erythrocytes to monocytes, endothelial and C32 melanoma cells. Journal of Immunology 135, 3494–7.Google Scholar
Beier, J. C., Onyango, F. K., Koros, J. K., Ramadhan, M., Ogwang, R., Wirtz, R. A., Koech, D. & Roberts, C. R. (1991). Quantitation of malaria sporozoites transmitted in vitro during salivation by wild afrotropical anopheles. Medical and Veterinary Entomology 5, 71–9.CrossRefGoogle ScholarPubMed
Berendt, A. R., Ferguson, D. J. P. & Newbold, C. I. (1990). Sequestration in Plasmodium falciparum malaria: sticky cells and sticky problems. Parasitology Today 6, 247–54.Google Scholar
Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C. I. & Marsh, K. (1989). Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium, falciparum. Nature, London 341, 57–9.Google Scholar
Brewster, D. R., Kwiatkowski, D. & White, N. J. (1990). Neurological sequelae of cerebral malaria in children. Lancet 336, 1039–43.CrossRefGoogle ScholarPubMed
Bruce-Chwatt, L. J. (1963). A longitudinal survey of natural malaria infection in a group of West African adults. West African Medical Journal 12, 199217.Google Scholar
Carlson, J., Helmby, H., Hill, A. V. S., Brewster, D., Greenwood, B. M. & Wahlgren, M. (1990). Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336, 1457–60.Google Scholar
Clark, I. A., Chaudhri, C. & Cowden, W. B. (1989). Roles of tumour necrosis factor in the illness and pathology of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 436–40.CrossRefGoogle ScholarPubMed
Clark, I. A., Cowden, W. B., Butcher, G. A. & Hunt, N. H. (1987). Possible roles of tumor necrosis factors in the pathology of malaria. American Journal of Pathology 129, 192–9.Google Scholar
Clark, I. A., Rockett, K. A. & Cowden, W. B. (1991). Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitology Today 7, 2205–7.Google Scholar
Commey, J. O. O., Mills-Tetteh, D. & Phillips, B. J. (1980). Cerebral malaria in Accra, Ghana. Ghana Medical Journal 19, 6872.Google Scholar
Conway, D. & Mcbride, J. S. (1991). Population genetics of Plasmodium falciparum within a malaria hyperendemic area. Parasitology 103, 716.Google Scholar
Covell, G. (1951). Clinical, chemotherapeutic and immunological studies on induced malaria. British Medical Bulletin 8, 51–5.Google Scholar
Cox, F. E. G. (1988). Major animal models in malaria research: rodent. In Malaria: Principles and Practice of Malariology (ed. Wernsdorfer, W. H. & McGregor, I.), pp. 1503–43. Edinburgh: Churchill Livingstone.Google Scholar
David, P. H., Handunnetti, S. M., Leech, J. H., Gamace, P. & Mendis, K. (1988). Rosetting: a new cytoadherence property of malaria infected erythrocvtes. American Journal of Tropical Medicine and Hygiene 38, 289–97.CrossRefGoogle Scholar
Davis, T. M. E., Krishna, S., Looareesuwan, S., Supanaranoond, W., Pukrittavakamee, S., Attatamsoonthorn, K. & White, N. J. (1990). Erythrocyte sequestration and anaemia in severe faliciparum malaria. Analysis of acute changes in venous haematocrit using a simple mathematical model. Journal of Clinical Investigation 86, 793808.Google Scholar
Day, K. P., Koella, J. C., Nee, S., Gupta, S. & Read, A. F. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104 (Suppl.) S35–S52.Google Scholar
Dietz, K. (1988). Mathematical models for transmission and control of malaria. In Malaria: Principles and Practice of Malariology, (ed. Wernsdorfer, W. H. & McGregor, I.), 1091–133. Edinburgh: Churchill Livingstone.Google Scholar
Dunn, S. M., Hillman, A., Stomski, F., Jin, B., Lucas, C. H., Boyd, A. W., Krissansen, C. W. & Burns, G. F. (1989). Leucocyte adhesion molecules involved in inflammation. Transplantation Proceedings 21, 31–4.Google Scholar
Field, J. W. & Niven, J. C. (1937). A note on prognosis in relation to parasite counts in acute subtertian malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 30, 569–74.CrossRefGoogle Scholar
Fleming, A. F., Storey, J., Molyneaux, L., Iroko, E. A. & Attai, E. B. E. (1979). Abnormal haemoglobins in the Sudan Savana of Nigeria. Annals of Tropical Medicine and Parasitology 73, 161–72.Google Scholar
Fulton, J. D. (1939). Experiments on utilization of sugars in malaria parasites (Plasmodium knowlesi). Annals of Tropical Medicine and Parasitology 33, 217–27.Google Scholar
Gilles, H. M. (1957). The development of malarial infection in breast-fed Gambian infants. Annals of Tropical Medicine and Parasitology 51, 5872.Google Scholar
Goitein, K. J., Amit, Y. & Mussaffi, H. (1983). Intracranial pressure in central nervous system infections and cerebral ischaemia of infancy. Archives of Diseases in Childhood 58, 184–6.CrossRefGoogle ScholarPubMed
Grau, G. E., Frei, K., Piguet, P. F., Fontana, A., Heremans, H., Billiau, A., Vassalli, P. & Lambert, P. H. (1990). Interleukin 6 production in experimental cerebral malaria: modulation by anticytokine antibodies and possible role in hypergamma globulinaemia. Journal of Experimental Medicine 172, 1505–8.Google Scholar
Grau, G. E., Piguet, P. F., Vassalli, P. & Lambert, P. H. (1989 a). Tumour necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunological Reviews 112, 4970.Google Scholar
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J., Vassalli, P., Hommel, M. & Lambert, P. H. (1989 b). Tumour necrosis factor and disease severity in children with falciparum malaria. New England Journal of Medicine 320, 1586–91.Google Scholar
Gray, R. H., Smith, G. & Barass, P. (1990). The use of verbal autopsies to determine selected causes of death in children. Johns Hopkins University School of Hygiene and Public Health, Occasional Paper Number 10.Google Scholar
Greenwood, B. M., Bradley, A. K., GREENWOOD, A. M., Byass, P., Jammeh, K., Marsh, K., Tulloch, S., Oldfield, F. S. J. & Hayes, R. J. (1987). Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 478–86.Google Scholar
Haldane, J. B. S. (1949). The rate of mutation of human genes. Proceedings of the VIIIth International Congress on Genetics and Heredity (Suppl. 35), 367.Google Scholar
Hendrikse, R. G., Hassan, A. H., Olumide, L. O. & Akinkunmi, A. (1971). Malaria in early childhood: an investigation of 500 seriously ill children in whom a clinical diagnosis of malaria was made on admission to the children's emergency room at University College Hospital, Ibadan. Annals of Tropical Medicine and Parasitology 65, 120.Google Scholar
Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennet, S., Brewster, D., McMichael, A. J. & Greenwood, B. M. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature, London 352, 595600.Google Scholar
Ho, M., Singh, B., Looareesuwan, S., Davis, T. M. E., Bunnag, D. & White, N. J. (1991). Clinical correlates of in vitro Plasmodium falciparum cytoadherence. Infection and Immunity 59, 873–8.Google Scholar
Holloway, P. A. H., Krishna, S. & White, N. J. (1991). Plasmodium berghei: lactic acidosis and hypoglycaemia in a rodent model of severe malaria; effects of glucose, quinine and dichloracetate. Experimental Parasitology 72, 123–33.CrossRefGoogle Scholar
Kern, P., Hemmer, C. J., VanDame, J., Gruss, H. J. & Dietrich, M. (1989). Elevated tumour necrosis factor alpha and interleukin–6 serum levels as markers for complicated Plasmodium falciparum malaria. American Journal of Medicine 87, 139–43.CrossRefGoogle ScholarPubMed
Knowles, D. M., Tolidjian, B., Marbee, C., D'Agati, V., Grimes, M. & Chess, L. (1984). Monoclonal anti-human monocyte antibodies OKM1 and OKM5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. Journal of Immunology 132, 2170–3.CrossRefGoogle ScholarPubMed
Krishna, S., Shoubridge, E. A., White, N. J., Weatherall, D. J. & Radda, G. K. (1983). Plasmodium yoelli; blood oxygen and brain function in the infected mouse. Experimental Parasitology 56, 391–6.Google Scholar
Kwiatkowski, D., Hill, A. V. S., Sambon, I., Twumasi, P., Castracan, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Luzzi, G. H., Merry, A. H., Newbold, C. I., Marsh, K. & Pasvol, G. (1991). Protection by alpha thalassaemia against Plasmodium falciparum malaria: modified surface antigen expression rather than impaired growth or cytoadherence. Journal of Experimental Medicine 173, 785–91.Google Scholar
McConkey, G. A., Waters, A. & McCutchan, T. F. (1990). The generation of genetic diversity in malaria parasites. Annual Reviews of Microbiology 44, 479–98.Google Scholar
McGregor, I. A. (1960). Demographic effects of malaria with special reference to the stable malaria of Africa. West African Medical Journal 9, 260–5.Google Scholar
Macpherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. (1985). Ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology 119, 385401.Google Scholar
Maegraith, B. G., Deegan, T. & Jones, E. S. (1952). Suppression of malaria, P. berghei, by milk. British Medical Journal 2, 1382–4.Google Scholar
Marsh, K., Marsh, V. M., Brown, J., Whittle, H. C. & Greenwood, B. M. (1988). Plasmodium falciparum: the behaviour of clinical isolates in an in vitro model of infected red blood cell sequestration. Experimental Parasitology 65, 202–8.Google Scholar
Marsh, K., Otoo, I., Hayes, R. J., Carson, D. C. & Greenwood, B. M. (1989). Antibodies to blood stage antigens of Plasmnodium falciparum in rural Gambians and their relation to protection against infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 293303.Google Scholar
Mercado, T. I. (1952). Blood sugar studies on the white rat infected with Plasmodium berghei. American Journal of Tropical Medicine and Hygiene 1, 932–5.Google Scholar
Miller, L. H., MASON, S. J., Clyde, D. F. & McGinniss, M. H. (1976). The resistance factor to Plasmodium vivax in blacks. New England Journal of Medicine 295, 302–4.Google Scholar
Minns, R. A., Engleman, H. M. & Stirling, H. (1989). Cerebrospinal fluid pressure in pyrogenic meningitis. Archives of Diseases in Childhood 64, 814–20.Google Scholar
Molyneaux, L. (1985). The impact of parasitic diseases and their control on mortality, with an emphasis on malaria in Africa. In Health Policy, Social Policy and Mortality Prospects, (ed. Vallin, J. & Lopez, A.), pp. 1344. Liege: Ordina Editions.Google Scholar
Molyneux, M. E., Taylor, T. E., Wirima, J. J. & Borgstein, J. A. (1989). Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Quarterly Journal of Medicine New Series 71, 265, 441–59.Google Scholar
Murray, M. J., Murray, A. B., Murray, M. B. & Murray, C. J. (1978). The adverse effect of iron repletion on the course of certain infections. British Medical Journal 2, 1113–15.Google Scholar
Murray, M. J., Murray, A. B., Murray, N. J. & Murray, M. B. (1978 b). Diet and cerebral malaria: the effect of famine and refeeding. American Journal of Clinical Nutrition 31, 5761.Google Scholar
Nagel, R. L. (1990). Innate resistance to malaria: the intraerythrocytic cycle. Blood Cells 16, 321–39.Google Scholar
Nash, G. B., Cooke, B. M., Marsh, K., Berendt, A., Newbold, C. & Stuart, J. (1992). Rheological analysis of the adhesive interactions of red blood cells parasitized by Plasmodium falciparumn. Blood (in the Press).Google Scholar
Newton, C. R. J. C., Kirkham, F. J., Winstanley, P. A., Pasvol, C., Peshu, N., Warrell, D. A. & Marsh, K. (1991). Intracranial pressure in African children with cerebral malaria. Lancet i, 573–6.CrossRefGoogle Scholar
Ockenhouse, C. F., Tandon, N. N., Magowan, C., Jamieson, G. A. & Chulay, J. D. (1989). Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 243, 1469–71.Google Scholar
Okitolonda, W., Delacollette, C., Malengreau, M. & Henquin, J. C. (1987). High incidence of hypoglycaemia in African patients treated with intravenous quinine for severe malaria. British Medical Journal 295, 716–18.Google Scholar
OO, M. M., Aikawa, M., Than, T., Aye, T. M., Myint, P. T., Igarashi, I. & Schoene, W. C. (1987). Human cerebral malaria: a pathological study. Journal of Neuropathology and Experimental Neurology 46, 223–31.Google Scholar
Oquendo, P., Hundt, E., Lawleer, J. & Seed, B. (1989). CD36 directly mediates cytoadherence of Plasmnodium falciparum parasitized erythrocytes. Cell 58, 95101.CrossRefGoogle Scholar
Parravicini, C. L. (1989). In Leucocyte Typing IV (ed. Knapp, W.), pp. 985–8. London: Oxford University Press.Google Scholar
Piazza, A., Belvedere, M. C., Bernoco, D., Conighi, C., Contu, L., Curtoni, E. S., Mattiuz, P. L., Mayr, W., Richiardi, P., Scudeller, C. & Ceppellini, R. (1972). HLA variation in four Sardinian villages under differential selective pressure by malaria. In Histocompatability Testing (ed. Dausset, J. & Colombani, J.) pp. 7384. Baltimore: Williams and Wilkins.Google Scholar
Pringle, G. (1966). A quantitative study of naturally acquired malaria infections in Anopheles Gambiae and Anopheles funestus in a highly malarious area of E. Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 626–32.Google Scholar
Roberts, D. D., Sherwood, J. A., Spitalnik, S. L., Panton, L. J., Howard, R., Dixit, V. M., Frazier, W. A., Miller, L. H. & Ginsburg, V. (1985). Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature, London 318, 64–6.Google Scholar
Roblin, X., LeBras, J. & Coulanges, P. (1989). Hypoglycémies sévères au cours d'accès pernicieux a plasmodium falciparum traités par Ia quinine. Bulletin de la Société de Pathologie Exotique 82, 476–81.Google Scholar
Rock, E. P., Roth, E. F., Rojas-Corona, R. R., Sherwood, J. A., Nagel, R. L., Howard, H. J. & Kaul, D. K. (1988). Thrombospondin mediates the cytoadherence of Plasmodium falciparum – infected red cells to vascular endothelium in shear flow condition. Blood 71, 71–5.Google Scholar
Rosenberg, R., Wirtz, R. A., Scheider, I. & Burge, R. (1990). An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Transactions of the Royal Society of Tropical and Hygiene 84, 709–12.Google Scholar
Schofield, L. (1991). On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitology Today 7, 99105.Google Scholar
Serjeantson, S., Bryson, K., Amato, D. & Babona, D. (1977). Malaria and hereditary ovalocytosis. Human Genetics 37, 161–7.Google Scholar
Sherwood, J., Roberts, D., Spitalnik, S. L., Marsh, K., Harvey, E. B., Miller, L. H. & Howard, R. J. (1989). Studies of the receptors on melanoma cells for Plasmodium falciparum infected erythrocytes. American Journal of Tropical Medicine and Hygiene 40, 119–27.CrossRefGoogle ScholarPubMed
Smith, A. W., Hendrikse, R. G., Harrison, C., Hayes, R. J. & Greenwood, B. M. (1989). The effects on malaria of treatment of iron-deficiency anaemia with oral iron in Gambian children. Annals of Tropical Paediatrics 9, 1723.Google Scholar
Snow, R. W. & Marsh, K. (1992). Verbal autopsies to estimate childhood causes of death: their limitations and recommendations for further development. Health Policy and Planning (in the Press).Google Scholar
Swellengrebel, N. H. (1950). The parasite–host relationship in malaria. Annals of Tropical Medicine and Parasitology 43, 4791.Google Scholar
Taylor, T. E., Molyneux, M. E., Wirima, J. J., Fletcher, K. A. & Morris, K. (1988). Blood glucose levels in malarian children before and during the administration of intravenous quinine for severe falciparum malaria. New England Journal of Medicine 319, 1040–7.Google Scholar
Thapa, B. R., Marwaha, R. K., Kumar, L. & Mehta, S. (1988). Cerebral malaria in children: therapeutic considerations. Indian Pediatrics 25, 61–5.Google Scholar
Thurnham, D. I., Oppenheimer, S. J. & Bull, R. (1983). Riboflavin status and malaria in infants in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 423–4.Google Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomic consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.Google Scholar
Toro, G. & Roman, G. (1978). Cerebral malaria and disseminated vasculomyelinopathy. Archives of Neurology 35, 271–5.Google Scholar
Trape, J. F., Peelman, P. & Merault-Peelman, B. (1985). Criteria for diagnosing clinical malaria among a semiimmune population exposed to intense and perennial transmission. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 435–42.Google Scholar
Waller, D., Crawley, J., Nosten, F., Chapman, D., Krishna, S., Craddock, C., Brewster, D. & White, N. J. (1991). Intracranial pressure in childhood cerebral malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 362–4.Google Scholar
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., Corcorran, L. M., Burkot, T. R. & Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–6.Google Scholar
Warrell, D. A. (1987). Pathophysiology of severe falciparum malaria in man. Parasitology 94, S53–S76.CrossRefGoogle ScholarPubMed
Warrell, D. A., Molyneux, M. E. & Beales, P. F. (1990). Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 84 (Suppl. 2), 165.Google Scholar
Weatherall, D. j. (1987). Common genetic disorders of the red cell and the ‘malaria’ hypothesis. Annals of Tropical Medicine and Parasitology 81, 539–48.Google Scholar
White, N. J. & Krishna, S. (1989). Treatment of malaria: some considerations and limitations of the current methods of assessment. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 767–77.Google Scholar
White, N. J., Looareesuan, S., Phillips, R. E., Warrell, D. A., Chanthavanich, P. & Pongpaew, P. (1985). Pathological and prognostic significance of cerebrospinal fluid lactate in cerebral malaria. Lancet i, 776–8.Google Scholar
White, N. J., Miller, K. D., Marsh, K., Berry, C. D., Turner, R. C., Williamson, O. H. & Brown, J. (1987). Hypoglycaemia in African children with severe malaria. Lancet 1, 708–11.Google Scholar
White, N. J., Warrell, D. A., Chanthavanich, P., Looareesuan, S., Warrell, M. J., Krishna, S., Williamson, D. H. & Turner, H. C. (1983). Severe hypoglycaemia and hyperinsulinaemia in falciparum malaria. New England Journal of Medicine 309, 61–6.Google Scholar
Wirtz, R. A., Zavala, F., Charoenvit, Y., Campbell, G. H., Burkot, T. R., Schneider, I., Esser, K. M., Beaudoin, R. L. & Andre, R. G. (1987). Comparative testing of Plasmodium falciparum sporozoite monoclonal antibodies for ELISA development. Bulletin of the World Health Organization 65, 3945.Google Scholar
World Health Organization (1989). The use of impregnated bednets and other materials for vector borne disease control. WHO/VBC/89.981 Geneva.Google Scholar
Yuthavong, Y., Bunyaratvej, A. & Kamchonwongpaisan, S. (1990). Increased Susceptibility of malaria-infected variant erythrocytes to the mononuclear phagocyte system. Blood Cells 16, 591–7.Google Scholar