Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T11:34:09.210Z Has data issue: false hasContentIssue false

MALDI-TOF MS in clinical parasitology: applications, constraints and prospects

Published online by Cambridge University Press:  08 July 2016

NEELJA SINGHAL
Affiliation:
Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
MANISH KUMAR
Affiliation:
Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
JUGSHARAN SINGH VIRDI*
Affiliation:
Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
*
*Corresponding author: Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India. E-mail: virdi_dusc@rediffmail.com

Summary

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is currently being used for rapid and reproducible identification of bacteria, viruses and fungi in clinical microbiological laboratories. However, some studies have also reported the use of MALDI-TOF MS for identification of parasites, like Leishmania, Giardia, Cryptosporidium, Entamoeba, ticks and fleas. The present review collates all the information available on the use of this technique for parasites, in an effort to assess its applicability and the constraints for identification/diagnosis of parasites and diseases caused by them. Though MALDI-TOF MS-based identification of parasites is currently done by reference laboratories only, in future, this promising technology might surely replace/augment molecular methods in clinical parasitology laboratories.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198207.Google Scholar
Bitam, I., Dittmar, K., Parola, P., Whiting, M. F. and Raoult, D. (2010). Fleas and flea-borne diseases. International Journal of Infectious Diseases 14, e667e676.Google Scholar
Calderaro, A., Gorrini, C., Bommezzadri, S., Piccolo, G., Dettori, G. and Chezzi, C. (2006). Entamoeba histolytica and Entamoeba dispar: comparison of two PCR assays for diagnosis in a non-endemic setting. Transactions of the Royal Society of Tropical Medicine and Hygiene 100, 450457.Google Scholar
Calderaro, A., Piergianni, M., Buttrini, M., Montecchini, S., Piccolo, G., Gorrini, C., Rossi, S., Chezzi, C., Arcangeletti, M. C., Medici, M. C. and De Conto, F. (2015). MALDI-TOF mass spectrometry for the detection and differentiation of Entamoeba histolytica and Entamoeba dispar . PLoS ONE 10, e0122448.Google Scholar
Cassagne, C., Pratlong, F., Jeddi, F., Benikhlef, R., Aoun, K., Normand, A. C., Faraut, F., Bastien, P. and Piarroux, R. (2014). Identification of Leishmania at the species level with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Microbiology and Infection 20, 551557.CrossRefGoogle ScholarPubMed
Clark, A. E., Kaleta, E. J., Arota, A. and Wolk, D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews 26S, 547603.Google Scholar
Croxatto, A., Prod'hom, G. and Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews 36, 380387.CrossRefGoogle ScholarPubMed
Culha, G., Akyar, I., Yildiz Zeyrek, F., Kurt, Ö., Gündüz, C., Özensoy Töz, S., Östan, I., Cavus, I., Gülkan, B., Kocagöz, T., Özbel, Y. and Özbilgin, A. (2014). Leishmaniasis in Turkey: determination of Leishmania species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Iranian Journal of Parasitology 9, 239248.Google ScholarPubMed
Dedet, J. P. and Pratlong, F. (2009). Leishmaniasis. In Manson's Tropical Diseases (eds Cook, G. C & Zumla, A.), pp. 13411365. Elseiver Science Limited, Saunders, London.Google Scholar
Downard, K. M. (2013). Proteotyping for the rapid identification of influenza virus and other biopathogens. Chemical Society Reviews 42, 85848595.Google Scholar
El Khéchine, A., Couderc, C., Flaudrops, C., Raoult, D. and Drancourt, M. (2011). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS ONE 6, e24720.Google Scholar
Emonet, S., Shah, H. N., Cherkaoui, A. and Schrenzel, J. (2010). Application and use of various mass spectrometry methods in clinical microbiology. Clinical Microbiology and Infection 16, 16041613.Google Scholar
Fenselau, C. and Demirev, P. A. (2001). Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrometry Reviews 20, 157171.Google Scholar
Foulet, F., Botterel, F., Buffet, P., Morizot, G., Rivollet, D., Deniau, M., Pratlong, F., Costa, J. M. and Bretagne, S. (2007). Detection and identification of Leishmania species from clinical specimens by using a real-time PCR assay and sequencing of the cytochrome B gene. Journal of Clinical Microbiology 45, 21102115.Google Scholar
Glassmeyer, S. T., Ware, M. W., Schaefer, F. W. III, Shoemaker, J. A. and Kryak, D. D. (2007). An improved method for the analysis of Cryptosporidium parvum oocysts by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Journal of Eukaryotic Microbiology 54, 479481.Google Scholar
Graça, G. C., Volpini, A. C., Romero, G. A., Oliveira Neto, M. P., Hueb, M., Porrozzi, R., Boité, M. C. and Cupolillo, E. (2012). Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Memórias do Instituto Oswaldo Cruz 107, 664674.Google Scholar
Gray, J., Zintl, A., Hildebrandt, A., Hunfeld, K. P. and Weiss, L. (2010). Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks and Tick Borne Diseases 1, 310.Google Scholar
Herwaldt, B. L., Arana, B. A. and Navin, T. R. (1992). The natural history of cutaneous leishmaniasis in Gautemala. Journal of Infectious Diseases 165, 518527.Google Scholar
Hettick, J. M., Green, B. J., Buskirk, A. D., Kashon, M. L., Slaven, J. E., Janotka, E., Blachere, F. M., Schmechel, D. and Beezhold, D. H. (2008). Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Analytical Biochemistry 380, 276281.CrossRefGoogle ScholarPubMed
Hubálek, Z. and Rudolf, I. (2012). Tick-borne viruses in Europe. Parasitology Research 111, 936.Google Scholar
Ilina, E. N., Borovskaya, A. D., Malakhova, M. M., Vereshchagin, V. A., Kubanova, A. A., Kruglov, A. N., Svistunova, T. S., Gazarian, A. O., Maier, T., Kostrzewa, M. and Govorun, V. M. (2009). Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria . Journal of Molecular Diagnostics 11, 7586.Google Scholar
Karger, A., Kampen, H., Bettin, B., Dautel, H., Ziller, M., Hoffmann, B., Süss, J. and Klaus, C. (2012). Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks and Tick Borne Diseases 3, 7889.CrossRefGoogle ScholarPubMed
Lau, A. F., Drake, S. K., Calhoun, L. B., Henderson, C. M. and Zelazny, A. M. (2013). Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology 51, 828834.CrossRefGoogle Scholar
Luo, Y., Siu, G. K., Yeung, A. S., Chen, J. H., Ho, P. L., Leung, K. W., Tsang, J. L., Cheng, V. C., Guo, L., Yang, J., Ye, L. and Yam, W. C. (2015). Performance of the VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid bacterial identification in two diagnostic centers in China. Journal of Medical Microbiology 64, 1824.Google Scholar
Magnuson, M. L., Owens, J. H. and Kelty, C. A. (2000). Characterization of Cryptosporidium parvum by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology 66, 47204724.Google Scholar
Martiny, D., Bart, A., Vandenberg, O., Verhaar, N., Wentink-Bonnema, E., Moens, C. and van Gool, T. (2014). Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). European Journal of Clinical Microbiology and Infectious Diseases 33, 529536.CrossRefGoogle ScholarPubMed
Mary, C., Faraut, F., Lascombe, L. and Dumon, H. (2004). Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. Journal of Clinical Microbiology 42, 52495255.Google Scholar
Mens, P., Spieker, N., Omar, S., Heijnen, M., Schallig, H. and Kager, P. A. (2007). Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Tropical Medicine and International Health 12, 238244.CrossRefGoogle ScholarPubMed
Michael, F. W. (2002). Phylogeny of the holometabolous insect orders basedon 18S ribosomal DNA: when bad things happen to good data. Experimentia Supplementum 92, 6983.Google Scholar
Momo, R. A., Povey, J. F., Smales, C. M., O'Malley, C. J., Montague, G. A. and Martin, E. B. (2013). MALDI-TOF mass spectrometry coupled with multivariate pattern recognition analysis for the rapid biomarker profiling of Escherichia coli in different growth phases. Analytical and Bioanalytical Chemistry 405, 82518265.CrossRefGoogle ScholarPubMed
Montalvo, A. M., Fraga, J., Monzote, L., Montano, I., De Doncker, S., Dujardin, J. C. and Van der Auwera, G. (2010). Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology 137, 11591168.Google Scholar
Mouri, O., Morizot, G., Van der Auwera, G., Ravel, C., Passet, M., Chartrel, N., Joly, I., Thellier, M., Jauréguiberry, S., Caumes, E., Mazier, D., Marinach-Patrice, C. and Buffet, P. (2014). Easy identification of Leishmania species by mass spectrometry. PLoS Neglected Tropical Diseases 8, e2841.Google Scholar
Ndao, M. (2009). Diagnosis of parasitic diseases: old and new approaches. Interdisciplinary Perspectives on Infectious Diseases 278246. http://dx.doi.org/10.1155/2009/278246 Google Scholar
Nenoff, P., Erhard, M., Simon, J. C., Muylowa, G. K., Herrmann, J., Rataj, W. and Gräser, Y. (2013). MALDI-TOF mass spectrometry - a rapid method for the identification of dermatophyte species. Medical Mycology 51, 1724.Google Scholar
Parola, P. and Raoult, D. (2001). Tick-borne bacterial diseases emerging in Europe. Clinical Microbiology and Infection 7, 8083.Google Scholar
Patel, R. (2015). MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry 61, 100111.Google Scholar
Pratlong, F., Dereure, J., Ravel, C., Lami, P., Balard, Y., Serres, G., Lanotte, G., Rioux, J. A. and Dedet, J. P. (2009). Geographical distribution and epidemiological features of Old World cutaneous leishmaniasis foci, based on the isoenzyme analysis of 1048 strains. Tropical Medicine and International Health 14, 10711085.Google Scholar
Rothen, J., Githaka, N., Kanduma, E. G., Olds, C., Pflüger, V., Mwaura, S., Bishop, R. P. and Daubenberger, C. (2016). Matrix assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasites and Vectors 9, 151.Google Scholar
Rotureau, B., Ravel, C., Couppié, P., Pratlong, F., Nacher, M., Dedet, J. P. and Carme, B. (2006). Use of PCR-restriction fragment length polymorphism analysis to identify the main new world Leishmania species and analyze their taxonomic properties and polymorphism by application of the assay to clinical samples. Journal of Clinical Microbiology 44, 459467.Google Scholar
Singhal, N., Kumar, M., Kanaujia, P. K. and Virdi, J. S. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 6, 791.Google Scholar
Souppart, L., Moussa, H., Cian, A., Sanciu, G., Poirier, P. E., Alaoui, H., Delbac, F., Boorom, K., Delhaes, L., Dei-Cas, E. and Viscogliosi, E. (2010). Subtype analysis of Blastocystis isolates from symptomatic patients in Egypt. Parasitology Research 106, 505511.Google Scholar
Stephan, R., Cernela, N., Ziegler, D., Pflüger, V., Tonolla, M., Ravasi, D., Fredriksson-Ahomaa, M. and Hächler, H. (2011). Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry. Journal of Microbiological Methods 87, 150153.Google Scholar
Tanyuksel, M. and Petri, W. A. Jr. (2003). Laboratory diagnosis of amoebiasis. Clinical Microbiology Reviews 16, 713729.Google Scholar
Thézénas, M. L., Huang, H., Njie, M., Ramaprasad, A., Nwakanma, D. C., Fischer, R., et al. (2013). PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection. Journal of Proteome Research 12, 12111222.Google Scholar
U.S. Environmental Protection Agency. (1999). Method 1623: Cryptosporidium and Giardia in water by filtration. /IMS/FA. EPA/821-R-99-006. Office of Water, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
Verroken, A., Janssens, M., Berhin, C., Bogaerts, P., Huang, T. D., Wauters, G., and Glupczynski, Y. (2010). Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of Nocardia species. Journal of Clinical Microbiology 48, 40154021.Google Scholar
Villegas, E. N., Glassmeyer, S. T., Ware, M. W., Hayes, S. L. and Schaefer, F. W. III (2006). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of Giardia lamblia and Giardia muris . Journal of Eukaryotic Microbiology 53, S179S181.Google Scholar
Yang, M., Chao, T. C., Nelson, R. and Ros, A. (2012). Direct detection of peptides and proteins on a microfluidic platform with MALDI massspectrometry. Analytical and Bioanalytical Chemistry 404, 16811689.Google Scholar
Yssouf, A., Flaudrops, C., Drali, R., Kernif, T., Socolovschi, C., Berenger, J. M., Raoult, D. and Parola, P. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. Journal of Clinical Microbiology 51, 522528.Google Scholar
Yssouf, A., Socolovschi, C., Leulmi, H., Kernif, T., Bitam, I., Audoly, G., Almeras, L., Raoult, D. and Parola, P. (2014). Identification of flea species using MALDI-TOF/MS. Comparative Immunology, Microbiology and Infectious Diseases 37, 153157.CrossRefGoogle ScholarPubMed
Yssouf, A., Almeras, L., Terras, J., Socolovschi, C., Raoult, D. and Parola, P. (2015 a). Detection of Rickettsia spp. in ticks by MALDI-TOF MS. PLoS Negleted Tropical Diseases 9, e0003473.Google Scholar
Yssouf, A., Almeras, L., Berenger, J. M., Laroche, M., Raoult, D. and Parola, P. (2015 b). Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks and Tick Borne Diseases 6, 579586.Google Scholar
Yssouf, A., Almeras, L., Raoult, D. and Parola, P. (2016). Emerging tools for identification of arthropod vectors. Future Microbiology 11, 549566.Google Scholar