Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:45:56.595Z Has data issue: false hasContentIssue false

A model for the dynamics of a protozoan parasite within and between successive host populations

Published online by Cambridge University Press:  26 February 2007

D. Klinkenberg*
Affiliation:
Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
J. A. P. Heesterbeek
Affiliation:
Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
*
*Corresponding author. Tel: +31 30 2531233. Fax: +31 30 2521887. E-mail: d.klinkenberg@vet.uu.nl

Summary

Parasite-host systems often include an obligatory environmental stage in the parasite life-cycle, which can be transmitted between successive populations. Complexity even increases if immunity only gradually develops upon re-infection. For a better understanding of such systems we study Eimeria spp. in chickens, a protozoan parasite transmitted through oocysts on the floor. This paper deals with dynamics within and between successive cohorts of chickens by coupling a within-host description of the parasite life-cycle (with immunity) to re-uptake of oocysts from the environment. First the initial environmental oocyst level is related to the maximum infection load within a cohort, as a measure of production damage, from which we conclude that minimum damage levels can be observed with intermediate oocyst levels. Then we relate the initial to the final oocyst level of a cohort, and study the dynamics between cohorts in relation to an oocyst cleaning efficiency after each cohort. The resulting unstable dynamics lead to the conclusion that it will often be impossible to minimize damage by repeatedly cleaning with the same effort: it may be necessary to artificially increase oocyst levels in the shed before each chicken cohort.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. C. and Fetterer, R. H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Reviews 15, 5865.CrossRefGoogle ScholarPubMed
Anderson, R. M. (1998). Complex dynamical behaviours in the interaction between parasite populations and the host's immune system. International Journal for Parasitology 28, 551566.CrossRefGoogle ScholarPubMed
Andreasen, V. and Frommelt, T. (2005). A school-oriented, age-structured epidemic model. SIAM Journal of Applied Mathematics 65, 18701887.CrossRefGoogle Scholar
Dugaw, C. J., Hastings, A., Preisser, E. L. and Strong, D. R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology 66, 583594.CrossRefGoogle ScholarPubMed
Edelstein-Keshet, L. (1988). Mathematical Models in Biology. McGraw-Hill, Inc., New York.Google Scholar
Graat, E. A. M., Henken, A. M., Ploeger, H. W., Noordhuizen, J. P. T. M. and Vertommen, M. H. (1994). Rate and course of sporulation of oocysts of Eimeria acervulina under different environmental conditions. Parasitology 108, 497502.CrossRefGoogle ScholarPubMed
Graat, E. A. M., Ploeger, H. W., Henken, A. M., De Vries Reilingh, G., Noordhuizen, J. P. T. M. and Van Beek, P. N. G. M. (1996). Effects of initial litter contamination level with Eimeria acervulina on population dynamics and production characteristics in broilers. Veterinary Parasitology 65, 223232.CrossRefGoogle ScholarPubMed
Henken, A. M., Graat, E. A. M., Ploeger, H. W. and Carpenter, T. E. (1994). Description of a model to simulate effects of Eimeria acervulina infection on broiler production. Parasitology 108, 513518.CrossRefGoogle Scholar
Ives, A. R., Gross, K. and Jansen, V. A. A. (2000). Periodic mortality events in predator-prey systems. Ecology 81, 33303340.Google Scholar
Klinkenberg, D. and Heesterbeek, J. A. P. (2005). A simple model for the within-host dynamics of a protozoan parasite. Proceedings of the Royal Society of London, B 272, 593600.Google ScholarPubMed
Lillehoj, H. S. and Lillehoj, E. P. (2000). Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Diseases 44, 408425.CrossRefGoogle ScholarPubMed
Long, P. L. and Rowell, J. G. (1975). Sampling broiler house litter for coccidial oocysts. British Poultry Science 16, 583592.CrossRefGoogle ScholarPubMed
McDougald, L. R. (2003). Protozoal infections. In Diseases of Poultry (ed. Saif, Y. M.), pp. 9731023. Iowa State Press, Ames, Iowa, USA.Google Scholar
Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences 107, 255287.CrossRefGoogle ScholarPubMed
Parry, S., Barratt, M. E. J., Jones, S., McKee, S. and Murray, J. D. (1992). Modelling coccidial infection in chickens: emphasis on vaccination by in-feed delivery of oocysts. Journal of Theoretical Biology 157, 407425.CrossRefGoogle ScholarPubMed
Reyna, P. S., McDougald, L. R. and Mathis, G. F. (1982). Survival of coccidia in poultry litter and reservoirs of infection. Avian Diseases 27, 464473.CrossRefGoogle Scholar
Roberts, M. G. and Heesterbeek, J. A. P. (1998). A simple parasite model with complicated dynamics. Journal of Mathematical Biology 37, 272290.CrossRefGoogle ScholarPubMed
Roberts, M. G., Smith, G. and Grenfell, B. T. (1995). Mathematical model for macroparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations (ed. Grenfell, B. T. and Dobson, A. P.), pp. 177208. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Waldenstedt, L., Elwinger, K., Lundén, A., Thebo, P. and Uggla, A. (2001). Sporulation of Eimeria maxima oocysts in litter with different moisture contents. Poultry Science 80, 14121415.CrossRefGoogle ScholarPubMed
Williams, R. B. (2001). Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks. International Journal for Parasitology 31, 10561069.CrossRefGoogle ScholarPubMed
Williams, R. B., Johnson, J. D. and Andrews, S. J. (2000). Anticoccidial vaccination of broiler chickens in various management programmes: relationship between oocyst accumulation in litter and the development of protective immunity. Veterinary Research Communications 24, 309325.CrossRefGoogle ScholarPubMed
Yun, C. H., Lillehoj, H. S. and Lillehoj, E. P. (2000). Intestinal immune response to coccidiosis. Developmental and Comparative Immunology 24, 303324.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Klinkenberg Supplementary Material

Klinkenberg Supplementary Material.pdf

Download Klinkenberg Supplementary Material(PDF)
PDF 75.7 KB