Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T07:14:01.249Z Has data issue: false hasContentIssue false

Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania

Published online by Cambridge University Press:  16 November 2010

G. SCHÖNIAN*
Affiliation:
Institute of Microbiology and Hygiene, Charité University Medicine Berlin, Dorotheenstrasse 96, D-10117 Berlin, Germany
K. KUHLS
Affiliation:
Institute of Microbiology and Hygiene, Charité University Medicine Berlin, Dorotheenstrasse 96, D-10117 Berlin, Germany
I. L. MAURICIO
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT London, UK
*
*Corresponding author: Institute of Microbiology and Hygiene, Charité University Medicine Berlin, Campus Mitte, Dorotheenstrasse 96, D-10117 Berlin, Germany. Tel: +49 30 450524028. Fax: +49-30-450524902. E-mail: gabriele.schoenian@charite.de

Summary

Molecular approaches are being used increasingly for epidemiological studies of visceral and cutaneous leishmaniases. Several molecular markers resolving genetic differences between Leishmania parasites at species and strain levels have been developed to address key epidemiological and population genetic questions. The current gold standard, multilocus enzyme typing (MLEE), needs cultured parasites and lacks discriminatory power. PCR assays identifying species directly with clinical samples have proven useful in numerous field studies. Multilocus sequence typing (MLST) is potentially the most powerful phylogenetic approach and will, most probably, replace MLEE in the future. Multilocus microsatellite typing (MLMT) is able to discriminate below the zymodeme level and seems to be the best candidate for becoming the gold standard for distinction of strains. Population genetic studies by MLMT revealed geographical and hierarchic population structure in L. tropica, L. major and the L. donovani complex. The existence of hybrids and gene flow between Leishmania populations suggests that sexual recombination is more frequent than previously thought. However, typing and analytical tools need to be further improved. Accessible databases should be created and sustained for integrating data obtained by different researchers. This would allow for global analyses and help to avoid biases in analyses due to small sample sizes.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akopyants, N. S., Kimblin, N., Secundino, N., Patrick, R., Peters, N., Lawyer, P., Dobson, D. E., Beverley, S. M. and Sacks, D. L. (2009). Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324, 265268. doi:10.1126/science.1169464CrossRefGoogle ScholarPubMed
Al-Jawabreh, A., Schnur, L. F., Nasereddin, A., Schwenkenbecher, J. M., Abdeen, Z., Barghuthy, F., Khanfar, H., Presber, W. and Schönian, G. (2004). The recent emergence of Leishmania tropica in Jericho (A'riha) and its environs, a classical focus of L. major. Tropical Medicine and International Health 9, 812816. doi:10.1111/j.1365-3156.2004.01268.xCrossRefGoogle ScholarPubMed
Al-Jawabreh, A., Diezmann, S., Mueller, M., Wirth, T., Schnur, L. F., Strelkova, M. V., Kovalenko, D. A., Razakov, S. A., Schwenkenbecher, J., Kuhls, K. and Schoenian, G. (2008). Identification of geographically distributed sub-populations of Leishmania (Leishmania) major by microsatellite analysis. BMC Evolutionary Biology 8, 183. doi: 10.1186/1471-2148-8-183CrossRefGoogle ScholarPubMed
Alam, M. Z., Haralambous, C., Kuhls, K., Gouzelou, E., Sgouras, D., Soteriadou, K., Schnur, L., Pratlong, F. and Schönian, G. (2009 a). The paraphyletic composition of Leishmania donovani zymodeme MON-37 revealed by multilocus microsatellite typing. Microbes and Infection 11, 707715. doi:10.1016/j.micinf.2009.04.009CrossRefGoogle ScholarPubMed
Alam, M. Z., Kovalenko, D. A., Kuhls, K., Nasyrova, R. M., Ponomareva, V. I., Fatullaeva, A. A., Razakov, S. A., Schnur, L. F. and Schönian, G. (2009 b). Identification of the agent causing visceral leishmaniasis in Uzbeki and Tajiki foci by analysing parasite DNA extracted from patients’ Giemsa-stained tissue preparations. Parasitology 136, 981986. doi:10.1017/S0031182009006465CrossRefGoogle ScholarPubMed
Alam, M. Z., Kuhls, K., Schweynoch, C., Sundar, S., Rijal, S., Shamsuzzaman, A. K., Raju, B. V., Salotra, P., Dujardin, J. C. and Schönian, G. (2009 c). Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infection, Genetics and Evolution 9, 2431. doi:10.1016/j.meegid.2008.09.005CrossRefGoogle ScholarPubMed
Amro, A., Schönian, G., Al-Sharabati, M. B., Azmi, K., Nasereddin, A., Abdeen, Z., Schnur, L. F., Baneth, G., Jaffe, C. L. and Kuhls, K. (2009). Population genetics of Leishmania infantum in Israel and the Palestinian Authority through microsatellite analysis. Microbes and Infection 11, 484492. doi:10.1016/j.micinf.2009.02.001CrossRefGoogle ScholarPubMed
Antoniou, M., Haralambous, C., Mazeris, A., Pratlong, F., Dedet, J. P. and Soteriadou, K. (2008). Leishmania donovani leishmaniasis in Cyprus. The Lancet Infectious Diseases 8, 67. doi:10.1016/S1473-3099(07)70297-9CrossRefGoogle ScholarPubMed
Banuls, A. L., Hide, M. and Tibayrenc, M. (1999). Molecular epidemiology and evolutionary genetics of Leishmania parasites. International Journal for Parasitology 29, 11371147. doi:10.1016/S0020-7519(99)00083-1CrossRefGoogle Scholar
Bensoussan, E., Nasereddin, A., Jonas, F., Schnur, L. F. and Jaffe, C. L. (2006). Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. Journal of Clinical Microbiology 44, 14351439. doi: 10.1128/JCM.44.4.1435-1439.2006CrossRefGoogle ScholarPubMed
Bhattarai, N. R., Das, M. L., Rijal, S., Van der Auwera, G., Picado, A., Khanal, B., Roy, L., Speybroeck, N., Berkvens, D., Davies, C. R., Coosemans, M., Boelaert, M. and Dujardin, J. C. (2009). Natural infection of Phlebotomus argentipes with Leishmania and other Trypanosomatids in a visceral leishmaniasis endemic region of Nepal. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 10871092. doi:10.1016/j.trstmh.2009.03.008CrossRefGoogle Scholar
Bhattarai, N. R., Dujardin, J. C., Rijal, S., De Doncker, S., Boelaert, M. and Van der Auwera, G. (2010). Development and evaluation of different PCR-based typing methods for discrimination of Leishmania donovani isolates from Nepal. Parasitology 137, 947957. doi: 10.1017/S0031182009991752CrossRefGoogle ScholarPubMed
Botilde, Y., Laurent, T., Quispe Tintaya, W., Chicharro, C., Canavate, C., Cruz, I., Kuhls, K., Schönian, G. and Dujardin, J. C. (2006). Comparison of molecular markers for strain typing of Leishmania infantum. Infection, Genetics and Evolution 6, 440446. doi:10.1016/j.meegid.2006.02.003CrossRefGoogle ScholarPubMed
Bougnoux, M. E., Morand, S. and D'Enfert, C. (2002). Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. Journal of Clinical Microbiology 40, 12901297. doi:10.1128/JCM.40.4.1290-1297.2002CrossRefGoogle ScholarPubMed
Bulle, B., Millon, L., Bart, J. M., Gallego, M., Gambarelli, F., Portus, M., Schnur, L., Jaffe, C. L., Fernandez-Barredo, S., Alunda, J. M. and Piarroux, R. (2002). Practical approach for typing strains of Leishmania infantum by microsatellite analysis. Journal of Clinical Microbiology 40, 33913397. doi:10.1128/JCM.40.9.3391-3397.2002CrossRefGoogle ScholarPubMed
Capelli, G., Baldelli, R., Ferroglio, E., Genchi, C., Gradoni, L., Gramiccia, M., Maroli, M., Mortarino, M., Pietrobelli, M., Rossi, L. and Ruggiero, M. (2004). [Monitoring of canine leishmaniasis in northern Italy: an update from a scientific network]. Parassitologia 46, 193197.Google ScholarPubMed
Castilho, T. M., Shaw, J. J. and Floeter-Winter, L. M. (2003). New PCR assay using glucose-6-phosphate dehydrogenase for identification of Leishmania species. Journal of Clinical Microbiology 41, 540546. doi:10.1128/JCM.41.2.540-546.2003CrossRefGoogle ScholarPubMed
Chargui, N., Amro, A., Haouas, N., Schönian, G., Babba, H., Schmidt, S., Ravel, C., Lefebvre, M., Bastien, P., Chaker, E., Aoun, K., Zribi, M. and Kuhls, K. (2009). Population structure of Tunisian Leishmania infantum and evidence for the existence of hybrids and gene flow between genetically different populations. International Journal for Parasitology 39, 801811. doi:10.1016/j.ijpara.2008.11.016CrossRefGoogle ScholarPubMed
Chicharro, C., Morales, M. A., Serra, T., Ares, M., Salas, A. and Alvar, J. (2002). Molecular epidemiology of Leishmania infantum on the island of Majorca: a comparison of phenotypic and genotypic tools. Transactions of the Royal Society of Tropical Medicine and Hygiene 96 (Suppl 1), S93S99.CrossRefGoogle Scholar
Constantine, C. C. (2003). Importance and pitfalls of molecular analysis to parasite epidemiology. Trends in Parasitology 19, 346348. doi:10.1016/S1471-4922(03)00167-3CrossRefGoogle ScholarPubMed
Corander, J., Gyllenberg, M. and Koski, T. (2007). Random partition models and exchangeability for Bayesian identification of population structure. Bulletin of Mathematical Biology 69, 797815. doi: 10.1007/s11538-006-9161-1CrossRefGoogle ScholarPubMed
Cortes, S., Mauricio, I., Almeida, A., Cristovao, J. M., Pratlong, F., Dedet, J. P. and Campino, L. (2006). Application of kDNA as a molecular marker to analyse Leishmania infantum diversity in Portugal. Parasitology International 55, 277283. doi:10.1016/j.parint.2006.07.003CrossRefGoogle ScholarPubMed
Cupolillo, E., Brahim, L. R., Toaldo, C. B., De Oliveira-Neto, M. P., De Brito, M. E., Falqueto, A., De Farias Naiff, M. and Grimaldi, G. jr. (2003). Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. Journal of Clinical Microbiology 41, 31263132. doi:10.1128/JCM.41.7.3126-3132.2003CrossRefGoogle ScholarPubMed
Cupolillo, E., Grimaldi, G. Jr. and Momen, H. (1994). A general classification of New World Leishmania using numerical zymotaxonomy. American Journal of Tropical Medicine and Hygiene 50, 296311.CrossRefGoogle ScholarPubMed
Cupolillo, E., Grimaldi, G. Jr., Momen, H. and Beverley, S. M. (1995). Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Molecular and Biochemical Parasitology 73, 145155.CrossRefGoogle Scholar
Da Silva, L. A., De Sousa Cdos, S., Da Graca, G. C., Porrozzi, R. and Cupolillo, E. (2010). Sequence analysis and PCR-RFLP profiling of the hsp70 gene as a valuable tool for identifying Leishmania species associated with human leishmaniasis in Brazil. Infection, Genetics and Evolution 10, 7783. doi:10.1016/j.meegid.2009.11.001CrossRefGoogle ScholarPubMed
De Meeus, T., Lehmann, L. and Balloux, F. (2006). Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice. Infection, Genetics and Evolution 6, 163170. doi:10.1016/j.meegid.2005.02.004CrossRefGoogle Scholar
Deborggraeve, S., Boelaert, M., Rijal, S., De Doncker, S., Dujardin, J. C., Herdewijn, P. and Buscher, P. (2008 a). Diagnostic accuracy of a new Leishmania PCR for clinical visceral leishmaniasis in Nepal and its role in diagnosis of disease. Tropical Medicine and International Health 13, 13781383. doi:10.1111/j.1365-3156.2008.02154.xCrossRefGoogle ScholarPubMed
Deborggraeve, S., Laurent, T., Espinosa, D., Van der Auwera, G., Mbuchi, M., Wasunna, M., El-Safi, S., Al-Basheer, A. A., Arevalo, J., Miranda-Verastegui, C., Leclipteux, T., Mertens, P., Dujardin, J. C., Herdewijn, P. and Buscher, P. (2008 b). A simplified and standardized polymerase chain reaction format for the diagnosis of leishmaniasis. The Journal of Infectious Diseases 198, 15651572. doi:10.1086/592509CrossRefGoogle ScholarPubMed
Dieringer, D. and Schlötterer, C. (2003). Microsatellite Analyser (MSA): a platform independent analysis tool for large microsatellite sets. Molecular Ecology Notes 3, 167169. doi:10.1046/j.1471-8286.2003.00351.xCrossRefGoogle Scholar
Disch, J., Pedras, M. J., Orsini, M., Pirmez, C., De Oliveira, M. C., Castro, M. and Rabello, A. (2005). Leishmania (Viannia) subgenus kDNA amplification for the diagnosis of mucosal leishmaniasis. Diagnostic Microbiology and Infectious Disease 51, 185190. doi:10.1016/j.diagmicrobio.2004.10.005CrossRefGoogle ScholarPubMed
Dujardin, J. C. (2006). Risk factors in the spread of leishmaniases: towards integrated monitoring? Trends in Parasitology 22, 46. doi:10.1016/j.pt.2005.11.004CrossRefGoogle ScholarPubMed
Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5, 435445. doi:10.1038/nrg1348CrossRefGoogle ScholarPubMed
Fakhar, M., Motazedian, M. H., Daly, D., Lowe, C. D., Kemp, S. J. and Noyes, H. A. (2008). An integrated pipeline for the development of novel panels of mapped microsatellite markers for Leishmania donovani complex, Leishmania braziliensis and Leishmania major. Parasitology 135, 567574. doi:10.1017/S0031182008004186CrossRefGoogle ScholarPubMed
Fraga, J., Montalvo, A. M., De Doncker, S., Dujardin, J. C. and Van der Auwera, G. (2010). Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infection, Genetics and Evolution 10, 238245. doi:10.1016/j.meegid.2009.11.007CrossRefGoogle ScholarPubMed
Garcia, L., Kindt, A., Bermudez, H., Llanos-Cuentas, A., De Doncker, S., Arevalo, J., Wilber Quispe Tintaya, K. and Dujardin, J. C. (2004). Culture-independent species typing of neotropical Leishmania for clinical validation of a PCR-based assay targeting heat shock protein 70 genes. Journal of Clinical Microbiology 42, 22942297. doi:10.1128/JCM.42.5.2294-2297.2004.CrossRefGoogle ScholarPubMed
Garcia, A. L., Kindt, A., Quispe-Tintaya, K. W., Bermudez, H., Llanos, A., Arevalo, J., Banuls, A. L., De Doncker, S., Le Ray, D. and Dujardin, J. C. (2005). American tegumentary leishmaniasis: antigen-gene polymorphism, taxonomy and clinical pleomorphism. Infection, Genetics and Evolution 5, 109116. doi:10.1016/j.meegid.2004.07.003CrossRefGoogle ScholarPubMed
Garcia, A. L., Parrado, R., De Doncker, S., Bermudez, H. and Dujardin, J. C. (2007 a). American tegumentary leishmaniasis: direct species identification of Leishmania in non-invasive clinical samples. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 368371. doi:10.1016/j.trstmh.2006.06.009CrossRefGoogle ScholarPubMed
Garcia, A. L., Tellez, T., Parrado, R., Rojas, E., Bermudez, H. and Dujardin, J. C. (2007 b). Epidemiological monitoring of American tegumentary leishmaniasis: molecular characterization of a peridomestic transmission cycle in the Amazonian lowlands of Bolivia. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 12081213. doi:10.1016/j.trstmh.2007.09.002CrossRefGoogle ScholarPubMed
Halkett, F., Simon, J. C. and Balloux, F. (2005). Tackling the population genetics of clonal and partially clonal organisms. Trends in Ecology & Evolution 20, 194201. doi:10.1016/j.tree.2005.01.001CrossRefGoogle ScholarPubMed
Hamilton, P. B., Adams, E. R., Malele, I. I. and Gibson, W. C. (2008). A novel, high-throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon. Infection, Genetics and Evolution 8, 2633. doi:10.1016/j.meegid.2007.09.003CrossRefGoogle Scholar
Harms, G., Schönian, G. and Feldmeier, H. (2003). Leishmaniasis in Germany. Emerging Infectious Diseases 9, 872875.CrossRefGoogle ScholarPubMed
Harris, E., Kropp, G., Belli, A., Rodriguez, B. and Agabian, N. (1998). Single-step multiplex PCR assay for characterization of New World Leishmania complexes. Journal of Clinical Microbiology 36, 19891995.CrossRefGoogle ScholarPubMed
Hide, M., Banuls, A. L. and Tibayrenc, M. (2001). Genetic heterogeneity and phylogenetic status of Leishmania (Leishmania) infantum zymodeme MON-1: epidemiological implications. Parasitology 123, 425432.CrossRefGoogle ScholarPubMed
Jacobson, R. L., Eisenberger, C. L., Svobodova, M., Baneth, G., Sztern, J., Carvalho, J., Nasereddin, A., El Fari, M., Shalom, U., Volf, P., Votypka, J., Dedet, J. P., Pratlong, F., Schönian, G., Schnur, L. F., Jaffe, C. L. and Warburg, A. (2003). Outbreak of cutaneous leishmaniasis in northern Israel. The Journal of Infectious Diseases 188, 10651073. doi:10.1086/378204CrossRefGoogle ScholarPubMed
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Chance, M. L., Kemp, S. J., Watts, P. C. and Noyes, H. A. (2004). Leishmania donovani is the only cause of visceral leishmaniaisis in East Africa; previous descriptions of L. infantum and “L. archibaldi“ from this region are a consequence of convergent evolution in the isoenzyme data. Parasitology 129, 399409.CrossRefGoogle Scholar
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Kemp, S. J. and Noyes, H. A. (2002 a). Polymorphic microsatellite repeats are not conserved between Leishmania donovani and Leishmania major. Molecular Ecology Notes 2, 104106. doi:10.1046/j.1471-8286.2002.00161.xCrossRefGoogle Scholar
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Kemp, S. J. and Noyes, H. A. (2002 b). Towards a standard battery of microsatellite markers for the analysis of the Leishmania donovani complex. Annals of Tropical Medicine and Parasitology 96, 265270.CrossRefGoogle ScholarPubMed
Jimenez, M. I., Lopez-Velez, R., Molina, R., Canavate, C. and Alvar, J. (1996). HIV co-infection with a currently non-pathogenic flagellate. Lancet 347, 264265.CrossRefGoogle ScholarPubMed
Jirku, M., Zemanova, E., Al-Jawabreh, A., Schönian, G. and Lukes, J. (2006). Development of a direct species-specific PCR assay for differential diagnosis of Leishmania tropica. Diagnostic Microbiology and Infectious Disease 55, 7579. doi:10.1016/j.diagmicrobio.2005.12.001CrossRefGoogle ScholarPubMed
Johnston, V., Stockley, J. M., Dockrell, D., Warrell, D., Bailey, R., Pasvol, G., Klein, J., Ustianowski, A., Jones, M., Beeching, N. J., Brown, M., Chapman, A. L., Sanderson, F. and Whitty, C. J. (2009). Fever in returned travellers presenting in the United Kingdom: recommendations for investigation and initial management. Journal of Infection 59, 118. doi:10.1016/j.jinf.2009.05.005CrossRefGoogle ScholarPubMed
Kalinowski, S. T. (2005). Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94, 3336. doi:10.1038/sj.hdy.6800548CrossRefGoogle ScholarPubMed
Karunaweera, N. D., Pratlong, F., Siriwardane, H. V., Ihalamulla, R. L. and Dedet, J. P. (2003). Sri Lankan cutaneous leishmaniasis is caused by Leishmania donovani zymodeme MON-37. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 380381.CrossRefGoogle ScholarPubMed
Kato, H., Uezato, H., Katakura, K., Calvopina, M., Marco, J. D., Barroso, P. A., Gomez, E. A., Mimori, T., Korenaga, M., Iwata, H., Nonaka, S. and Hashiguch, I. Y. (2005). Detection and identification of Leishmania species within naturally infected sand flies in the Andean areas of Ecuador by a polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 72, 8793.CrossRefGoogle ScholarPubMed
Kuhls, K., Chicharro, C., Canavate, C., Cortes, S., Campino, L., Haralambous, C., Soteriadou, K., Pratlong, F., Dedet, J. P., Mauricio, I., Miles, M., Schaar, M., Ochsenreither, S., Radtke, O. A. and Schönian, G. (2008). Differentiation and gene flow among European populations of Leishmania infantum MON-1. Plos Neglected Tropical Diseases 2, E261. doi:10.1371/journal.pntd.0000261CrossRefGoogle ScholarPubMed
Kuhls, K., Keilonat, L., Ochsenreither, S., Schaar, M., Schweynoch, C., Presber, W. and Schönian, G. (2007). Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes and Infection 9, 334343. doi:10.1016/j.micinf.2006.12.009CrossRefGoogle ScholarPubMed
Kuhls, K., Mauricio, I. L., Pratlong, F., Presber, W. and Schönian, G. (2005). Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes and Infection 7, 12241234. doi:10.1016/j.micinf.2005.04.009CrossRefGoogle ScholarPubMed
Kumar, S., Tamura, K. and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefing in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Lachaud, L., Marchergui-Hammami, S., Chabbert, E., Dereure, J., Dedet, J. P. and Bastien, P. (2002). Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. Journal of Clinical Microbiology 40, 210215. doi:10.1128/JCM.40.1.210-215.2002.CrossRefGoogle ScholarPubMed
Lainson, R. and Shaw, J. J. (1998). New World leishmaniasis - the neotropical Leishmania species. In Topley & Wilson's Microbiology and Microbial Infections (ed. Cox, F. E. G., Kreier, J. P. and Wakelin, D.), pp. 241266. Arnold, London, UK.Google Scholar
Laurent, T., Rijal, S., Yardley, V., Croft, S., De Doncker, S., Decuypere, S., Khanal, B., Singh, R., Schönian, G., Kuhls, K., Chappuis, F. and Dujardin, J. C. (2007). Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution 7, 206212. doi:10.1016/j.meegid.2006.08.005CrossRefGoogle ScholarPubMed
Laurent, T., Van der Auwera, G., Hide, M., Mertens, P., Quispe-Tintaya, W., Deborggraeve, S., De Doncker, S., Leclipteux, T., Banuls, A. L., Buscher, P. and Dujardin, J. C. (2009). Identification of Old World Leishmania spp. by specific polymerase chain reaction amplification of cysteine proteinase B genes and rapid dipstick detection. Diagnostic Microbiology and Infectious Disease 63, 173181. doi:10.1016/j.diagmicrobio.2008.10.015CrossRefGoogle ScholarPubMed
Lee, S. T., Tarn, C. and Chang, K. P. (1993). Characterization of the switch of kinetoplast DNA minicircle dominance during development and reversion of drug resistance in Leishmania. Molecular and Biochemical Parasitology 58, 187203.CrossRefGoogle ScholarPubMed
Lessa, M. M., Lessa, H. A., Castro, T. W., Oliveira, A., Scherifer, A., Machado, P. and Carvalho, E. M. (2007). Mucosal leishmaniasis: epidemiological and clinical aspects. Brazilian Journal of Otorhinolaryngology 73, 843847.CrossRefGoogle Scholar
Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. and Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11, 24532465. doi:10.1046/j.1365-294X.2002.01643.xCrossRefGoogle ScholarPubMed
Lukes, J., Mauricio, I. L., Schönian, G., Dujardin, J. C., Soteriadou, K., Dedet, J. P., Kuhls, K., Tintaya, K. W., Jirku, M., Chocholova, E., Haralambous, C., Pratlong, F., Obornik, M., Horak, A., Ayala, F. J. and Miles, M. A. (2007). Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proceedings of the National Academy of Sciences, USA 104, 93759380. doi:10.1073/pnas.0703678104CrossRefGoogle ScholarPubMed
Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. and Spratt, B. G. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, USA 95, 31403145.CrossRefGoogle Scholar
Mauricio, I. L., Gaunt, M. W., Stothard, J. R. and Miles, M. A. (2001). Genetic typing and phylogeny of the Leishmania donovani complex by restriction analysis of PCR amplified gp63 intergenic regions. Parasitology 122, 393403.CrossRefGoogle ScholarPubMed
Mauricio, I. L., Stothard, J. R. and Miles, M. A. (2004). Leishmania donovani complex: genotyping with the ribosomal internal transcribed spacer and the mini-exon. Parasitology 128, 263267.CrossRefGoogle ScholarPubMed
Mauricio, I. L., Gaunt, M. W., Stothard, J. R. and Miles, M. A. (2007). Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. International Journal for Parasitology 37, 565576. doi:10.1016/j.ijpara.2006.11.020CrossRefGoogle ScholarPubMed
Mauricio, I. L., Yeo, M., Baghaei, M., Doto, D., Pratlong, F., Zemanova, E., Dedet, J. P., Lukes, J. and Miles, M. A. (2006). Towards multilocus sequence typing of the Leishmania donovani complex: resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). International Journal for Parasitology 36, 757769. doi:10.1016/j.ijpara.2006.03.006CrossRefGoogle ScholarPubMed
Miles, M. A., Llewellyn, M. S., Lewis, M. D., Yeo, M., Baleela, R., Fitzpatrick, S., Gaunt, M. W. and Mauricio, I. L. (2009). The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136, 15091528. doi:10.1017/S0031182009990977CrossRefGoogle ScholarPubMed
Montoya, L., Gallego, M., Gavignet, B., Piarroux, R., Rioux, J. A., Portus, M. and Fisa, R. (2007). Application of microsatellite genotyping to the study of a restricted Leishmania infantum focus: different genotype compositions in isolates from dogs and sand flies. American Journal of Tropical Medicine and Hygiene 76, 888895.CrossRefGoogle Scholar
Morales, M. A., Chicharro, C., Ares, M., Canavate, C., Barker, D. C. and Alvar, J. (2001). Molecular tracking of infections by Leishmania infantum. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 104107.CrossRefGoogle ScholarPubMed
Morales, M. A., Cruz, I., Rubio, J. M., Chicharro, C., Canavate, C., Laguna, F. and Alvar, J. (2002). Relapses versus reinfections in patients coinfected with Leishmania infantum and human immunodeficiency virus type 1. The Journal of Infectious Diseases 185, 15331537. doi:10.1086/340219CrossRefGoogle ScholarPubMed
Moreno, G., Rioux, J. A., Lanotte, G., Pratlong, F. and Serres, E. (1986). Le complexe Leishmania donovani s.l. Analyse enzymatique et traitement numerique. Individualisation du complexe L. infantum. Corollaires biogéographiques et phylogénetiques. A propos de 146 souches originaires de l'Ancien et du Nouveau Monde. In Leishmania. Taxonomie et Phylogénese. Applications éco-épidémiologiques (ed. Rioux, J. A.), pp. 105117. IMEEE, Montpellier, France.Google Scholar
Moreno, G. (1989). Les complexes Leishmania donovani et Leishmania infantum. Implications taxonomiques, biogéographiques et épidémiologiques. A propos de l'analyse enzymatique de 548 souches de l'Ancien et du Nouveau Monde. Thesis University De Montpellier, France.Google Scholar
Mrazek, J., Guo, X. and Shah, A. (2007). Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences, USA 104, 84728477. doi:10.1073/pnas.0702412104CrossRefGoogle ScholarPubMed
Mu, J., Myers, R. A., Jiang, H., Liu, S., Ricklefs, S., Waisberg, M., Chotivanich, K., Wilairatana, P., Krudsood, S., White, N. J., Udomsangpetch, R., Cui, L., Ho, M., Ou, F., Li, H., Song, J., Li, G., Wang, X., Seila, S., Sokunthea, S., Socheat, D., Sturdevant, D. E., Porcella, S. F., Fairhurst, R. M., Wellems, T. E., Awadalla, P. and Su, X. Z. (2010). Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nature Genetics 42, 268271. doi:10.1038/ng.528CrossRefGoogle ScholarPubMed
Nasereddin, A., Baneth, G., Schönian, G., Kanaan, M. and Jaffe, C. L. (2005). Molecular fingerprinting of Leishmania infantum strains following an outbreak of visceral leishmaniasis in central Israel. Journal of Clinical Microbiology 43, 60546059. doi:10.1128/JCM.43.12.6054-6059.2005CrossRefGoogle ScholarPubMed
Nasereddin, A., Bensoussan-Hermano, E., Schönian, G., Baneth, G. and Jaffe, C. L. (2008). Molecular diagnosis and species identification of Old World cutaneous leishmaniasis using a reverse line blot hybridization assay. Journal of Clinical Microbiology 46, 28482855. doi:10.1128/JCM.00951-08CrossRefGoogle ScholarPubMed
Neafsey, D. E., Schaffner, S. F., Volkman, S. K., Park, D., Montgomery, P., Milner, D. A. Jr.Lukens, A., Rosen, D., Daniels, R., Houde, N., Cortese, J. F., Tyndall, E., Gates, C., Stange-Thomann, N., Sarr, O., Ndiaye, D., Ndir, O., Mboup, S., Ferreira, M. U., Moraes Sdo, L., Dash, A. P., Chitnis, C. E., Wiegand, R. C., Hartl, D. L., Birren, B. W., Lander, E. S., Sabeti, P. C. and Wirth, D. F. (2008). Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biology 9, R171. doi:10.1186/gb-2008-9-12-r171CrossRefGoogle ScholarPubMed
Nolder, D., Roncal, N., Davies, C. R., Llanos-Cuentas, A. and Miles, M. A. (2007). Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene 76, 573578.CrossRefGoogle Scholar
Noyes, H., Pratlong, F., Chance, M., Ellis, J., Lanotte, G. and Dedet, J. P. (2002). A previously unclassified trypanosomatid responsible for human cutaneous lesions in Martinique (French West Indies) is the most divergent member of the genus Leishmania ss. Parasitology 124, 1724.CrossRefGoogle ScholarPubMed
Noyes, H. A., Reyburn, H., Bailey, J. W. and Smith, D. (1998). A nested-PCR-based schizodeme method for identifying Leishmania kinetoplast minicircle classes directly from clinical samples and its application to the study of the epidemiology of Leishmania tropica in Pakistan. Journal of Clinical Microbiology 36, 28772881.CrossRefGoogle Scholar
Ochsenreither, S., Kuhls, K., Schaar, M., Presber, W. and Schönian, G. (2006). Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. Journal of Clinical Microbiology 44, 495503. doi:10.1128/JCM.44.2.495–503.2006CrossRefGoogle ScholarPubMed
Oddone, R., Schweynoch, C., Schönian, G., De Sousa Cdos, S., Cupolillo, E., Espinosa, D., Arevalo, J., Noyes, H., Mauricio, I. and Kuhls, K. (2009). Development of a multilocus microsatellite typing approach for discriminating strains of Leishmania (Viannia) species. Journal of Clinical Microbiology 47, 28182825. doi:10.1128/JCM.00645-09CrossRefGoogle ScholarPubMed
Pacheco, R. S., Marzochi, M. C., Pires, M. Q., Brito, C. M., Madeira Mde, F. and Barbosa-Santos, E. G. (1998). Parasite genotypically related to a monoxenous trypanosomatid of dog's flea causing opportunistic infection in an HIV positive patient. Memórias do Instituto Oswaldo Cruz 93, 531537.CrossRefGoogle Scholar
Piarroux, R., Azaiez, R., Lossi, A. M., Reynier, P., Muscatelli, F., Gambarelli, F., Fontes, M., Dumon, H. and Quilici, M. (1993). Isolation and characterization of a repetitive DNA sequence from Leishmania infantum: development of a visceral leishmaniasis polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 49, 364369.CrossRefGoogle ScholarPubMed
Prina, E., Roux, E., Mattei, D. and Milon, G. (2007). Leishmania DNA is rapidly degraded following parasite death: an analysis by microscopy and real-time PCR. Microbes and Infection 9, 13071315. doi:10.1016/j.micinf.2007.06.005CrossRefGoogle ScholarPubMed
Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Quispe Tintaya, K. W., Ying, X., Dedet, J. P., Rijal, S., De Bolle, X. and Dujardin, J. C. (2004). Antigen genes for molecular epidemiology of leishmaniasis: polymorphism of cysteine proteinase B and surface metalloprotease glycoprotein 63 in the Leishmania donovani complex. The Journal of Infectious Diseases 189, 10351043. doi:10.1086/382049CrossRefGoogle ScholarPubMed
Quispe Tintaya, K. W., Laurent, T., Decuypere, S., Hide, M., Banuls, A. L., De Doncker, S., Rijal, S., Canavate, C., Campino, L. and Dujardin, J. C. (2005). Fluorogenic assay for molecular typing of the Leishmania donovani complex: taxonomic and clinical applications. The Journal of Infectious Diseases 192, 685692. doi:10.1086/432077CrossRefGoogle ScholarPubMed
Ravel, C., Cortes, S., Pratlong, F., Morio, F., Dedet, J. P. and Campino, L. (2006). First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. International Journal for Parasitology 36, 13831388. doi:10.1016/j.ijpara.2006.06.019CrossRefGoogle ScholarPubMed
Rhajaoui, M., Nasereddin, A., Fellah, H., Azmi, K., Amarir, F., Al-Jawabreh, A., Ereqat, S., Planer, J. and Abdeen, Z. (2007). New clinico-epidemiologic profile of cutaneous leishmaniasis, Morocco. Emerging Infectious Diseases 13, 13581360.CrossRefGoogle ScholarPubMed
Rioux, J. A., Lanotte, G., Serres, E., Pratlong, F., Bastien, P. and Perieres, J. (1990). Taxonomy of Leishmania. use of isoenzymes. suggestions for a new classification. Annales de Parasitologie Humaine et Comparee 65, 111125.CrossRefGoogle ScholarPubMed
Rossi, V., Wincker, P., Ravel, C., Blaineau, C., Pages, M. and Bastien, P. (1994). Structural organisation of microsatellite families in the Leishmania genome and polymorphisms at two (CA)n loci. Molecular and Biochemical Parasitology 65, 271282.CrossRefGoogle ScholarPubMed
Rotureau, B., Ravel, C., Nacher, M., Couppie, P., Curtet, I., Dedet, J. P. and Carme, B. (2006). Molecular epidemiology of Leishmania (Viannia) guyanensis in French Guiana. Journal of Clinical Microbiology 44, 468473. doi:10.1128/JCM.44.2.468-473.2006CrossRefGoogle ScholarPubMed
Rougeron, V., Waleckx, E., Hide, M., De Meeûs, T., Arevalo, J., Llanos-Cuentas, A. and Banuls, A. L. (2008). A set of 12 microsatellite loci for genetic studies of Leishmania braziliensis. Molecular Ecology Resources 8, 351353. doi:10.1111/j.1471-8286.2007.01953.xCrossRefGoogle ScholarPubMed
Rougeron, V., De Meeus, T., Hide, M., Waleckx, E., Bermudez, H., Arevalo, J., Llanos-Cuentas, A., Dujardin, J. C., De Doncker, S., Le Ray, D., Ayala, F. J. and Banuls, A. L. (2009). Extreme inbreeding in Leishmania braziliensis. Proceedings of the National Academy of Sciences, USA 106, 1022410229. doi:10.1073/pnas.0904420106CrossRefGoogle ScholarPubMed
Russell, R., Iribar, M. P., Lambson, B., Brewster, S., Blackwell, J. M., Dye, C. and Ajioka, J. W. (1999). Intra and inter-specific microsatellite variation in the Leishmania subgenus Viannia. Molecular and Biochemical Parasitology 103, 7177. doi:10.1016/S0166-6851(99)00117-6CrossRefGoogle ScholarPubMed
Sacks, D. L., Kenney, R. T., Kreutzer, R. D., Jaffe, C. L., Gupta, A. K., Sharma, M. C., Sinha, S. P., Neva, F. A. and Saran, R. (1995). Indian kala-azar caused by Leishmania tropica. Lancet 345, 959961. doi:10.1016/S0140-6736(95)90703-3CrossRefGoogle ScholarPubMed
Salotra, P., Sreenivas, G., Pogue, G. P., Lee, N., Nakhasi, H. L., Ramesh, V. and Negi, N. S. (2001). Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. Journal of Clinical Microbiology 39, 849854. doi:10.1128/JCM.39.3.849-854.2001CrossRefGoogle ScholarPubMed
Schlotterer, C. and Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20, 211215.CrossRefGoogle ScholarPubMed
Schnur, L. F., Eisenberger, C., Nasereddin, A., Dedet, J.-P., Pratlong, F., Jaffe, C. J. and Benami, R. (2001). Adult visceral leishmaniasis caused by Leishmania donovani senso stricto acquired locally in Israel. In 2nd World Congress on Leishmaniasis. pp. 20. Hersonissos, Crete, Greece.Google Scholar
Schönian, G., Mauricio, I., Gramiccia, M., Canavate, C., Boelaert, M. and Dujardin, J. C. (2008). Leishmaniases in the Mediterranean in the era of molecular epidemiology. Trends in Parasitology 24, 135142. doi:10.1016/j.pt.2007.12.006CrossRefGoogle ScholarPubMed
Schönian, G., Nasereddin, A., Dinse, N., Schweynoch, C., Schallig, H. D., Presber, W. and Jaffe, C. L. (2003). PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagnostic Microbiology and Infectious Disease 47, 349358. doi:10.1016/S0732-8893(03)00093-2CrossRefGoogle ScholarPubMed
Schönian, G., Schnur, L., El Fari, M., Oskam, L., Kolesnikov, A. A., Sokolowska-Kohler, W. and Presber, W. (2001). Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 217224.CrossRefGoogle ScholarPubMed
Schwenkenbecher, J. M., Frohlich, C., Gehre, F., Schnur, L. F. and Schönian, G. (2004). Evolution and conservation of microsatellite markers for Leishmania tropica. Infection, Genetics and Evolution 4, 99105. doi:10.1016/j.meegid.2004.01.005CrossRefGoogle ScholarPubMed
Schwenkenbecher, J. M., Wirth, T., Schnur, L. F., Jaffe, C. L., Schallig, H., Al-Jawabreh, A., Hamarsheh, O., Azmi, K., Pratlong, F. and Schönian, G. (2006). Microsatellite analysis reveals genetic structure of Leishmania tropica. International Journal for Parasitology 36, 237246. doi:10.1016/j.ijpara.2005.09.010CrossRefGoogle ScholarPubMed
Seridi, N., Amro, A., Kuhls, K., Belkaid, M., Zidane, C., Al-Jawabreh, A. and Schönian, G. (2008). Genetic polymorphism of Algerian Leishmania infantum strains revealed by multilocus microsatellite analysis. Microbes and Infection 10, 13091315. doi:10.1016/j.micinf.2008.07.031CrossRefGoogle ScholarPubMed
Sharma, N. L., Mahajan, V. K., Kanga, A., Sood, A., Katoch, V. M., Mauricio, I., Singh, C. D., Parwan, U. C., Sharma, V. K. and Sharma, R. C. (2005). Localized cutaneous leishmaniasis due to Leishmania donovani and Leishmania tropica: preliminary findings of the study of 161 new cases from a new endemic focus in Himachal Pradesh, India. American Journal of Tropical Medicine and Hygiene 72, 819824.CrossRefGoogle Scholar
Sharma, N. L., Mahajan, V. K., Ranjan, N., Verma, G. K., Negi, A. K. and Mehta, K. I. (2009). The sandflies of the Satluj River Valley, Himachal Pradesh (India): some possible vectors of the parasite causing human cutaneous and visceral leishmaniases in this endemic focus. Journal of Vector Borne Diseases 46, 136140.Google ScholarPubMed
Svobodova, M., Alten, B., Zidkova, L., Dvorak, V., Hlavackova, J., Myskova, J., Seblova, V., Kasap, O. E., Belen, A., Votypka, J. and Volf, P. (2009). Cutaneous leishmaniasis caused by Leishmania infantum transmitted by Phlebotomus tobbi. International Journal for Parasitology 39, 251256. doi:10.1016/j.ijpara.2008.06.016CrossRefGoogle ScholarPubMed
Svobodova, M., Volf, P. and Votypka, J. (2006 b). Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus. Microbes and Infection 8, 16911694. doi:10.1016/j.micinf.2006.01.024CrossRefGoogle ScholarPubMed
Svobodova, M., Votypka, J., Peckova, J., Dvorak, V., Nasereddin, A., Baneth, G., Sztern, J., Kravchenko, V., Orr, A., Meir, D., Schnur, L. F., Volf, P. and Warburg, A. (2006 a). Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, northern Israel. Emerging Infectious Diseases 12, 18601868.CrossRefGoogle ScholarPubMed
Takagi, H., Itoh, M., Islam, M. Z., Razzaque, A., Ekram, A. R., Hashighuchi, Y., Noiri, E. and Kimura, E. (2009). Sensitive, specific, and rapid detection of Leishmania donovani DNA by loop-mediated isothermal amplification. American Journal of Tropical Medicine and Hygiene 81, 578582. doi:10.4269/ajtmh.2009.09-0145CrossRefGoogle ScholarPubMed
Talmi-Frank, D., Nasereddin, A., Schnur, L. F., Schonian, G., Toz, S. O., Jaffe, C. L. and Baneth, G. (2010). Detection and identification of Old World Leishmania by high resolution melt analysis. Plos Neglected Tropical Diseases 4, E581. doi:10.1371/journal.pntd.0000581CrossRefGoogle ScholarPubMed
Thomaz-Soccol, V., Velez, I. D., Pratlong, F., Agudelos, S., Lanotte, G. and Rioux, J. A. (2000). Enzymatic polymorphism and phylogenetic relationships in Leishmania Ross, 1903 (Sarcomastigophora: Kinetoplastida): a case study in Colombia. Systematic Parasitology 46, 5968. doi:10.1023/A:1006379309576CrossRefGoogle ScholarPubMed
Tibayrenc, M. (2005). Bridging the gap between molecular epidemiologists and evolutionists. Trends in Microbiology 13, 575580. doi:10.1016/j.tim.2005.09.004CrossRefGoogle Scholar
Toth, G., Gaspari, Z. and Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967981. doi:10.1101/gr.10.7.967CrossRefGoogle ScholarPubMed
Tsukayama, P., Lucas, C. and Bacon, D. J. (2009). Typing of four genetic loci discriminates among closely related species of New World Leishmania. International Journal for Parasitology 39, 355362. doi:10.1016/j.ijpara.2008.08.004CrossRefGoogle ScholarPubMed
Van der Meide, W. F., Schoone, G. J., Faber, W. R., Zeegelaar, J. E., De Vries, H. J., Ozbel, Y., Lai, A. F. R. F., Coelho, L. I., Kassi, M. and Schallig, H. D. (2005). Quantitative nucleic acid sequence-based assay as a new molecular tool for detection and quantification of Leishmania parasites in skin biopsy samples. Journal of Clinical Microbiology 43, 55605566. doi:10.1128/JCM.43.11.5560-5566.2005CrossRefGoogle ScholarPubMed
Van Eys, G. J., Schoone, G. J., Kroon, N. C. and Ebeling, S. B. (1992). Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Molecular and Biochemical Parasitology 51, 133142.Google ScholarPubMed
Victoir, K., Banuls, A. L., Arevalo, J., Llanos-Cuentas, A., Hamers, R., Noel, S., De Doncker, S., Le Ray, D., Tibayrenc, M. and Dujardin, J. C. (1998). The gp63 gene locus, a target for genetic characterization of Leishmania belonging to subgenus Viannia. Parasitology 117, 113.CrossRefGoogle ScholarPubMed
Villinski, J. T., Klena, J. D., Abbassy, M., Hoel, D. F., Puplampu, N., Mechta, S., Boakye, D. and Raczniak, G. (2008). Evidence for a new species of Leishmania associated with a focal disease outbreak in Ghana. Diagnostic Microbiology and Infectious Disease 60, 323327. doi:10.1016/j.diagmicrobio.2007.09.013CrossRefGoogle ScholarPubMed
Volf, P., Benkova, I., Myskova, J., Sadlova, J., Campino, L. and Ravel, C. (2007). Increased transmission potential of Leishmania major/Leishmania infantum hybrids. International Journal for Parasitology 37, 589593. doi:10.1016/j.ijpara.2007.02.002CrossRefGoogle ScholarPubMed
Volkman, S. K., Sabeti, P. C., DeCaprio, D., Neafsey, D. E., Schaffner, S. F., Milner, D. A. Jr.Daily, J. P., Sarr, O., Ndiaye, D., Ndir, O., Mboup, S., Duraisingh, M. T., Lukens, A., Derr, A., Stange-Thomann, N., Waggoner, S., Onofrio, R., Ziaugra, L., Mauceli, E., Gnerre, S., Jaffe, D. B., Zainoun, J., Wiegand, R. C., Birren, B. W., Hartl, D. L., Galagan, J. E., Lander, E. S. and Wirth, D. F. (2007). A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics 39, 113119. doi:10.1038/ng1930CrossRefGoogle ScholarPubMed
World Health Organization (1990). Control of the leishmaniasis. Report of a WHO Expert Committee. WHO Expert Committee on the Control of the Leishmaniases, World Health Organization, Geneva, Switzerland.Google Scholar
Wirth, T., Hildebrand, F., Allix-Beguec, C., Wolbeling, F., Kubica, T., Kremer, K., Van Soolingen, D., Rusch-Gerdes, S., Locht, C., Brisse, S., Meyer, A., Supply, P. and Niemann, S. (2008). Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathogens 4, E1000160. doi:10.1371/journal.ppat.1000160CrossRefGoogle ScholarPubMed
Yurchenko, V., Kolesnikov, A. A. and Lukes, J. (2000). Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitologica (Praha) 47, 15.CrossRefGoogle ScholarPubMed
Zelazny, A. M., Fedorko, D. P., Li, L., Neva, F. A. and Fischer, S. H. (2005). Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. American Journal of Tropical Medicine and Hygiene 72, 415420.CrossRefGoogle Scholar
Zemanova, E., Jirku, M., Mauricio, I. L., Horak, A., Miles, M. A. and Lukes, J. (2007). The Leishmania donovani complex: genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, and FH), new targets for multilocus sequence typing. International Journal for Parasitology 37, 149160. doi:10.1016/j.ijpara.2006.08.008CrossRefGoogle ScholarPubMed
Zemanova, E., Jirku, M., Mauricio, I. L., Miles, M. A. and Lukes, J. (2004). Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. American Journal of Tropical Medicine and Hygiene 70, 613617.CrossRefGoogle ScholarPubMed