Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:20:15.654Z Has data issue: false hasContentIssue false

Monophyly of marsupial intraerythrocytic apicomplexan parasites from South America and Australia

Published online by Cambridge University Press:  03 September 2009

SANTIAGO MERINO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
JAVIER MARTÍNEZ
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871, Madrid, Spain
RODRIGO A. VÁSQUEZ
Affiliation:
Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
JAN ŠLAPETA*
Affiliation:
Faculty of Veterinary Science, University of Sydney, New South Wales 2006, Australia
*
*Corresponding author: Faculty of Veterinary Science, University of Sydney, New South Wales 2006, Australia. Tel: +61 2 9351 2025. Fax: +61 2 9351 7348. E-mail: jslapeta@usyd.edu.au

Summary

Intraerythrocytic parasites (Apicomplexa: Sarcocystidae) of the South American mouse opossum (Thylamys elegans) from Chile, South America, and of the yellow-bellied glider (Petaurus australis) from Australia were found to be monophyletic using SSU rDNA and partial LSU rDNA sequences. Phylogenetic reconstruction placed both species within the family Sarcocystidae. These intraerythrocytic parasites of marsupials represent an as yet unnamed genus predicted to have bisporocystic oocysts and tetrazoic sporocysts, which is a characteristic feature of all members of the family Sarcocystidae. These results show that erythrocytic parasites share a common ancestor and suggest co-evolution with their vertebrate host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carreno, R. A. and Barta, J. R. (1999). An eimeriid origin of isosporoid coccidia with Stieda bodies as shown by phylogenetic analysis of small subunit ribosomal RNA gene sequences. Journal of Parasitology 85, 7783.CrossRefGoogle ScholarPubMed
Carreno, R. A., Schnitzler, B. E., Jeffries, A. C., Tenter, A. M., Johnson, A. M. and Barta, J. R. (1998). Phylogenetic analysis of coccidia based on 18S rDNA sequence comparison indicates that Isospora is most closely related to Toxoplasma and Neospora. Journal of Eukaryotic Microbiology 45, 184188.CrossRefGoogle ScholarPubMed
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31, 34973500.CrossRefGoogle ScholarPubMed
Cummings, M. P., Handley, S. A., Myers, D. S., Reed, D. L., Rokas, A. and Winka, K. (2003). Comparing bootstrap and posterior probability values in the four-taxon case. Systematic Biology 52, 477487.CrossRefGoogle ScholarPubMed
Ellis, J. T., Morrison, D. A., Liddell, S., Jenkins, M. C., Mohammed, O. B., Ryce, C. and Dubey, J. P. (1999). The genus Hammondia is paraphyletic. Parasitology 118, 357362.CrossRefGoogle ScholarPubMed
Hickson, R. E., Simon, C. and Perrey, S. W. (2000). The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Molecular Biology and Evolution 17, 530539.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. (2002). Testing a covariotide model of DNA substitution. Molecular Biology and Evolution 19, 698707.CrossRefGoogle ScholarPubMed
Innis, C. J., Garner, M. M., Johnson, A. J., Wellehan, J. F. X., Tabaka, C., Marschang, R. E., Nordhausen, R. W. and Jacobson, E. R. (2007). Antemortem diagnosis and characterization of nasal intranuclear coccidiosis in Sulawesi tortoises (Indotestudo forsteni). Journal of Veterinary Diagnostic Investigation 19, 660667.CrossRefGoogle ScholarPubMed
Jirku, M., Modry, D., Šlapeta, J. R., Koudela, B. and Lukes, J. (2002). The phylogeny of Goussia and Choleoeimeria (Apicomplexa; Eimeriorina) and the evolution of excystation structures in coccidia. Protist 153, 379390.CrossRefGoogle ScholarPubMed
Merino, S., Martínez, J., Martínez-De La Puente, J., Criado-Fornelio, A., Tomás, G., Morales, J., Lobato, E. and García-Fraile, S. (2006). Molecular characterization of the 18S rDNA gene of an avian Hepatozoon reveals that it is closely related to Lankesterella. Journal of Parasitology 92, 13301335.CrossRefGoogle ScholarPubMed
Merino, S., Vásquez, R. A., Martínez, J., Celis-Diez, J. L., Martínez-De La Puente, J., Marín-Vial, P., Sánchez-Monsalvez, I. and Peirce, M. A. (2008). A sarcocystid misidentified as Hepatozoon didelphydis: Molecular data from a parasitic infection in the blood of the Southern Mouse Opossum (Thylamys elegans) from Chile. Journal of Eukaryotic Microbiology 55, 536540.CrossRefGoogle ScholarPubMed
Modry, D., Šlapeta, J. R., Jirku, M., Obornik, M., Lukes, J. and Koudela, B. (2001). Phylogenetic position of a renal coccidium of the European green frogs, ‘Isosporalieberkuehni Labbe 1894 (Apicomplexa: Sarcocystidae) and its taxonomic implications. International Journal of Systematic and Evolutionary Microbiology 51, 767772.CrossRefGoogle ScholarPubMed
Morrison, D. A. (2008). Prospects for elucidating the phylogeny of the Apicomplexa. Parasite – Journal de la Societe Francaise de Parasitologie 15, 191196.Google ScholarPubMed
Morrison, D. A., Bornstein, S., Thebo, P., Wernery, U., Kinne, J. and Mattsson, J. G. (2004). The current status of the small subunit rRNA phylogeny of the Coccidia (Sporozoa). International Journal for Parasitology 34, 501514.CrossRefGoogle ScholarPubMed
Morrison, D. A. and Ellis, J. T. (1997). Effects of nucleotide sequence alignment on phylogeny estimation: A case study of 18S rDNAs of Apicomplexa. Molecular Biology and Evolution 14, 428441.CrossRefGoogle ScholarPubMed
Mugridge, N. B., Morrison, D. A., Jakel, T., Heckeroth, A. R., Tenter, A. M. and Johnson, A. M. (2000). Effects of sequence alignment and structural domains of ribosomal DNA on phylogeny reconstruction for the protozoan family Sarcocystidae. Molecular Biology and Evolution 17, 18421853.CrossRefGoogle ScholarPubMed
Obornik, M., Jirku, M., Šlapeta, J. R., Modry, D., Koudela, B. and Lukes, J. (2002). Notes on coccidian phylogeny, based on the apicoplast small subunit ribosomal DNA. Parasitology Research 88, 360363.CrossRefGoogle ScholarPubMed
Posada, D. and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Schmidt, V., Dyachenko, V., Aupperle, H., Pees, M., Krautwald-Junghanns, M. E. and Daugschies, A. (2008). Case report of systemic coccidiosis in a radiated tortoise (Geochelone radiata). Parasitology Research 102, 431436.CrossRefGoogle Scholar
Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492508.CrossRefGoogle ScholarPubMed
Shimodaira, H. and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 12461247.CrossRefGoogle ScholarPubMed
Simmons, M. P., Pickett, K. M. and Miya, M. (2004). How meaningful are Bayesian support values? Molecular Biology and Evolution 21, 188199.CrossRefGoogle ScholarPubMed
Šlapeta, J. R., Modry, D., Votypka, J., Jirku, M., Lukes, J. and Koudela, B. (2003). Evolutionary relationships among cyst-forming coccidia Sarcocystis spp. (Alveolata: Apicomplexa: Coccidea) in endemic African tree vipers and perspective for evolution of heteroxenous life cycle. Molecular Phylogenetics and Evolution 27, 464475.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Wuyts, J., Perriere, G. and Van De Peer, Y. (2004). The European ribosomal RNA database. Nucleic Acids Research 32, D101D103.CrossRefGoogle ScholarPubMed
Zhu, B. Y., Hartigan, A., Reppas, G., Higgins, D. P., Canfield, P. J. and Šlapeta, J. (2009). Looks can deceive: Molecular identity of an intraerythrocytic apicomplexan parasite in Australian gliders. Veterinary Parasitology 159, 105111.CrossRefGoogle ScholarPubMed