Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T22:30:29.626Z Has data issue: false hasContentIssue false

N-acetyl D-glucosamine stimulates growth in procyclic forms of Trypanosoma brucei by inducing a metabolic shift

Published online by Cambridge University Press:  27 March 2008

C. E. EBIKEME
Affiliation:
Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA
L. PEACOCK
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG
V. COUSTOU
Affiliation:
Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, UMR-5234 CNRS, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
L. RIVIERE
Affiliation:
Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, UMR-5234 CNRS, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
F. BRINGAUD
Affiliation:
Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, UMR-5234 CNRS, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
W. C. GIBSON
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG
M. P. BARRETT*
Affiliation:
Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA
*
*Corresponding author. Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA. Tel/Fax: +44 141 330 6904. E-mail: m.barrett@bio.gla.ac.uk

Summary

The lectin-inhibitory sugars D-glucosamine (GlcN) and N-acetyl D-glucosamine (GlcNAc) are known to enhance susceptibility of the tsetse fly vector to infection with Trypanosoma brucei. GlcNAc also stimulates trypanosome growth in vitro in the absence of any factor derived from the fly. Here, we show that GlcNAc cannot be used as a direct energy source, nor is it internalized by trypanosomes. It does, however, inhibit glucose uptake by binding to the hexose transporter. Deprivation of D-glucose leads to a switch from a metabolism based predominantly on substrate level phosphorylation of D-glucose to a more efficient one based mainly on oxidative phosphorylation using L-proline. Procyclic form trypanosomes grow faster and to higher density in D-glucose-depleted medium than in D-glucose-rich medium. The ability of trypanosomes to use L-proline as an energy source can be regulated depending upon the availability of D-glucose and here we show that this regulation is a graded response to D-glucose availability and determined by the overall metabolic state of the cell. It appears, therefore, that the growth stimulatory effect of GlcNAc in vitro relates to the switch from D-glucose to L-proline metabolism. In tsetse flies, however, it seems probable that the effect of GlcNAc is independent of this switch as pre-adaptation to growth in proline had no effect on tsetse infection rate.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abubakar, L. U., Bulimo, W. D., Mulaa, F. J. and Osir, E. O. (2006). Molecular characterization of a tsetse fly midgut proteolytic lectin that mediates differentiation of African trypanosomes. Insect Biochemistry and Molecular Biology 36, 344352.CrossRefGoogle ScholarPubMed
Acosta-Serrano, A., Vassella, E., Liniger, M., Kunz, R. C., Brun, R., Roditi, I. and Englund, P. T. (2001). The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proceedings of the National Academy of Sciences, USA 98, 15131518.CrossRefGoogle ScholarPubMed
Aksoy, S. (2003). Control of tsetse flies and trypanosomes using molecular genetics. Veterinary Parasitology 115, 125145.CrossRefGoogle ScholarPubMed
Azema, L., Bringaud, F., Blonski, C. and Perie, J. (2000). Chemical and enzymatic synthesis of fructose analogues as probes for import studies by the hexose transporter in parasites. Bioorganic and Medicinal Chemistry 8, 717722.CrossRefGoogle ScholarPubMed
Azema, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Perie, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F. R. and Barrett, M. P. (2004). Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochemical Pharmacology 67, 459467.CrossRefGoogle ScholarPubMed
Barrett, M. P., Tetaud, E., Seyfang, A., Bringaud, F. and Baltz, T. (1995). Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochemical Journal 312 (Pt 3), 687691.CrossRefGoogle ScholarPubMed
Barrett, M. P., Burchmore, R. J., Stich, A., Lazzari, J. O., Frasch, A. C., Cazzulo, J. J. and Krishna, S. (2003). The trypanosomiases. Lancet 362, 14691480.CrossRefGoogle ScholarPubMed
Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil 39, 205207.CrossRefGoogle Scholar
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., MacLeod, A., Mooney, P. J., Moule, S., Martin, D. M., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quail, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Tallon, L., Turner, C. M., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barrell, B. G., Donelson, J. E., Hall, N., Fraser, C. M., Melville, S. E. and El Sayed, N. M. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422.CrossRefGoogle ScholarPubMed
Besteiro, S., Barrett, M. P., Riviere, L. and Bringaud, F. (2005). Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends in Parasitology 21, 185191.CrossRefGoogle ScholarPubMed
Bochud-Allemann, N. and Schneider, A. (2002). Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. Journal of Biological Chemistry 277, 3284932854.CrossRefGoogle ScholarPubMed
Bringaud, F. and Baltz, T. (1993). Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Molecular and Cellular Biology 13, 11461154.Google ScholarPubMed
Bringaud, F., Riviere, L. and Coustou, V. (2006). Energy metabolism of trypanosomatids: adaptation to available carbon sources. Molecular and Biochemical Parasitology 149, 19.CrossRefGoogle ScholarPubMed
Brun, R. and Schonenberger, M. (1979). Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Tropica 36, 289292.Google ScholarPubMed
Butikofer, P., Ruepp, S., Boschung, M. and Roditi, I. (1997). ‘GPEET’ procyclin is the major surface protein of procyclic culture forms of Trypanosoma brucei brucei strain 427. Biochemical Journal 326 (Pt 2), 415423.CrossRefGoogle ScholarPubMed
Carter, N. S. and Fairlamb, A. H. (1993). Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361, 173176.CrossRefGoogle ScholarPubMed
Coustou, V., Besteiro, S., Biran, M., Diolez, P., Bouchaud, V., Voisin, P., Michels, P. A., Canioni, P., Baltz, T. and Bringaud, F. (2003). ATP generation in the Trypanosoma brucei procyclic form: cytosolic substrate level is essential, but not oxidative phosphorylation. Journal of Biological Chemistry 278, 4962549635.CrossRefGoogle Scholar
Cross, G. A., Klein, R. A. and Linstead, D. J. (1975). Utilization of amino acids by Trypanosoma brucei in culture: L-threonine as a precursor for acetate. Parasitology 71, 311326.CrossRefGoogle ScholarPubMed
Cross, G. A. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.CrossRefGoogle ScholarPubMed
Cunningham, I. (1977). New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. Journal of Protozoology 24, 325329.CrossRefGoogle ScholarPubMed
Dale, C. and Welburn, S. C. (2001). The endosymbionts of tsetse flies: manipulating host-parasite interactions. International Journal for Parasitology 31, 628631.CrossRefGoogle ScholarPubMed
Eisenthal, R., Game, S. and Holman, G. D. (1989). Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochimica et Biophysica Acta 985, 8189.CrossRefGoogle ScholarPubMed
Evans, D. A. and Brown, R. C. (1972). The utilization of glucose and proline by culture forms of Trypanosoma brucei. Journal of Protozoology 19, 686690.CrossRefGoogle ScholarPubMed
Hu, C. and Aksoy, S. (2006). Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Molecular Microbiology 60, 11941204.CrossRefGoogle ScholarPubMed
Ibrahim, E. A., Ingram, G. A. and Molyneux, D. H. (1984). Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Parasitology 35, 151156.Google ScholarPubMed
Lamour, N., Riviere, L., Coustou, V., Coombs, G. H., Barrett, M. P. and Bringaud, F. (2005). Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. Journal of Biological Chemistry 280, 1190211910.CrossRefGoogle ScholarPubMed
Macleod, E. T., Maudlin, I., Darby, A. C. and Welburn, S. C. (2007). Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134, 827831.CrossRefGoogle ScholarPubMed
Michels, P. A., Bringaud, F., Herman, M. and Hannaert, V. (2006). Metabolic functions of glycosomes in trypanosomatids. Biochimica et Biophysica Acta 1763, 14631477.CrossRefGoogle ScholarPubMed
Mihok, S., Otieno, L. H., Darji, N. and Munyinyi, D. (1992). Influence of D(+)-glucosamine on infection rates and parasite loads in tsetse flies (Glossina spp.) infected with Trypanosoma brucei. Acta Tropica 51, 217228.CrossRefGoogle ScholarPubMed
Morris, J. C., Wang, Z., Drew, M. E. and Englund, P. T. (2002). Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO Journal 21, 44294438.CrossRefGoogle ScholarPubMed
Opperdoes, F. R. and Borst, P. (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Letters 80, 360364.CrossRefGoogle Scholar
Osir, E. O., Imbuga, M. O. and Onyango, P. (1993). Inhibition of Glossina morsitans midgut trypsin activity by D-glucosamine. Parasitology Research 79, 9397.CrossRefGoogle ScholarPubMed
Osir, E. O., Abubakar, L. and Imbuga, M. O. (1995). Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly Glossina longipennis. Parasitology Research 81, 276281.CrossRefGoogle ScholarPubMed
Peacock, L., Ferris, V., Bailey, M. and Gibson, W. (2006). Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions. Parasitology 132, 651658.CrossRefGoogle ScholarPubMed
Raz, B., Iten, M., Grether-Buhler, Y., Kaminsky, R. and Brun, R. (1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Tropica 68, 139147.CrossRefGoogle ScholarPubMed
Riviere, L., van Weelden, S. W., Glass, P., Vegh, P., Coustou, V., Biran, M., van Hellemond, J. J., Bringaud, F., Tielens, A. G. and Boshart, M. (2004). Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. Journal of Biological Chemistry 279, 4533745346.CrossRefGoogle ScholarPubMed
Roditi, I., Schwarz, H., Pearson, T. W., Beecroft, R. P., Liu, M. K., Richardson, J. P., Buhring, H. J., Pleiss, J., Bulow, R., Williams, R. O. and Overath, P. (1989). Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. Journal of Cell Biology 108, 737746.CrossRefGoogle ScholarPubMed
Roditi, I. (1996). The VSG-procyclin switch. Parasitology Today 12, 4749.CrossRefGoogle ScholarPubMed
Roditi, I., Furger, A., Ruepp, S., Schurch, N. and Butikofer, P. (1998). Unravelling the procyclin coat of Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 117130.CrossRefGoogle ScholarPubMed
Roditi, I. and Clayton, C. (1999). An unambiguous nomenclature for the major surface glycoproteins of the procyclic form of Trypanosoma brucei. Molecular and Biochemical Parasitology 103, 99100.CrossRefGoogle ScholarPubMed
van Hellemond, J. J., Opperdoes, F. R. and Tielens, A. G. (1998). Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proceedings of the National Academy of Sciences, USA 95, 30363041.CrossRefGoogle Scholar
van Weelden, S. W., Fast, B., Vogt, A., van der, M. P., Saas, J., van Hellemond, J. J., Tielens, A. G. and Boshart, M. (2003). Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. Journal of Biological Chemistry 278, 1285412863.CrossRefGoogle Scholar
van Weelden, S. W., van Hellemond, J. J., Opperdoes, F. R. and Tielens, A. G. (2005). New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. Journal of Biological Chemistry 280, 1245112460.CrossRefGoogle Scholar
Vassella, E., Den Abbeele, J. V., Butikofer, P., Renggli, C. K., Furger, A., Brun, R. and Roditi, I. (2000). A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes and Development 14, 615626.CrossRefGoogle ScholarPubMed
Vassella, E., Acosta-Serrano, A., Studer, E., Lee, S. H., Englund, P. T. and Roditi, I. (2001). Multiple procyclin isoforms are expressed differentially during the development of insect forms of Trypanosoma brucei. Journal of Molecular Biology 312, 597607.CrossRefGoogle ScholarPubMed
Vassella, E., Probst, M., Schneider, A., Studer, E., Renggli, C. K. and Roditi, I. (2004). Expression of a major surface protein of Trypanosoma brucei insect forms is controlled by the activity of mitochondrial enzymes. Molecular Biology of the Cell 15, 39863993.CrossRefGoogle Scholar
Welburn, S. C. and Maudlin, I. (1999). Tsetse-trypanosome interactions: rites of passage. Parasitology Today 15, 399403.CrossRefGoogle ScholarPubMed