Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T11:52:23.181Z Has data issue: false hasContentIssue false

Operational modelling to guide implementation and scale-up of diagnostic tests within the health system: exploring opportunities for parasitic disease diagnostics based on example application for tuberculosis

Published online by Cambridge University Press:  18 July 2014

IVOR LANGLEY*
Affiliation:
Department of Clinical Sciences and Centre for Applied Health Research and Delivery, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
EMILY ADAMS
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
BASRA DOULLA
Affiliation:
Central Tuberculosis Reference Laboratory, National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
S. BERTEL SQUIRE
Affiliation:
Department of Clinical Sciences and Centre for Applied Health Research and Delivery, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
*
*Corresponding author: Centre for Applied Health Research and Delivery, Pembroke Place, Liverpool L3 5QA, UK. E-mail: ivor.langley@liverpool.ac.uk

Summary

Research and innovation in the diagnosis of infectious and parasitic diseases has led to the development of several promising diagnostic tools, for example in malaria there is extensive literature concerning the use of rapid diagnostic tests. This means policymakers in many low and middle income countries need to make difficult decisions about which of the recommended tools and approaches to implement and scale-up. The test characteristics (e.g. sensitivity and specificity) of the tools alone are not a sufficient basis on which to make these decisions as policymakers need to also consider the best combination of tools, whether the new tools should complement or replace existing diagnostics and who should be tested. Diagnostic strategies need dovetailing to different epidemiology and structural resource constraints (e.g. existing diagnostic pathways, human resources and laboratory capacity). We propose operational modelling to assist with these complex decisions. Projections of patient, health system and cost impacts are essential and operational modelling of the relevant elements of the health system could provide these projections and support rational decisions. We demonstrate how the technique of operational modelling applied in the developing world to support decisions on diagnostics for tuberculosis, could in a parallel way, provide useful insights to support implementation of appropriate diagnostic innovations for parasitic diseases.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, E. R., Schoone, G. J., El Farazdag, A., El Safi, S. and Schallig, H. (2010). Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of leishmania parasites in clinical samples. American Journal of Tropical Medicine and Hygiene 82, 591596.Google Scholar
Adams, E. R., Mugasa, C., Boer, K., Dyserinck, H., Büscher, P., Schallig, H. and Leeflang, M. (2012). Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis – a systematic review. PLOS Neglected Tropical Diseases 6, e1438.Google Scholar
Bailey, J. W., Williams, J., Bain, B. J., Parker-Williams, J. and Chiodini, P. L. (2013). Guideline: the laboratory diagnosis of malaria. British Journal of Haematology 163, 573580.Google Scholar
Barda, B. D., Rinaldi, L., Ianniello, D., Zepherine, H., Salvo, F., Sadutshang, T., Cringoli, G., Clementi, M. and Albonico, M. (2013). Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLOS Neglected Tropical Diseases 7, e2344.Google Scholar
Bell, D., Wongsrichanalai, C. and Barnwell, J. (2006). Ensuring quality and access for malaria diagnosis: how can it be achieved? Nature Reviews Microbiology 4, 682695.Google Scholar
Boehme, C. C., Nabeta, P., Hillemann, D., Nicol, M. P., Shenai, S., Krapp, F., Allen, J., Tahirli, R., Blakemore, R., Rustomjee, R., Milovic, A., Jones, M., O'Brien, S., Persing, D. H., Ruesch-Gerdes, S., Gotuzzo, E., Rodrigues, C., Alland, D. and Perkins, M. D. (2010). Rapid molecular detection of tuberculosis and rifampin resistance. New England Journal of Medicine 363, 10051015.Google Scholar
Bogoch, I. I., Coulibaly, J. T., Andrews, J. R., Speich, B., Keiser, J., Stothard, J. R., N'Goran, E. K. and Utzinger, J. (2014). Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology 141, 18111818.Google Scholar
Buscher, P., Gilleman, Q. and Lejon, V. (2013). Rapid diagnostic test for sleeping sickness. New England Journal of Medicine 368, 10691070.Google Scholar
Cobelens, F., Van den Hof, S., Pai, M., Squire, S. B., Ramsay, A., and Kimerling, M. E. (2012). Which new diagnostics for tuberculosis, and when? Journal of Infectious Diseases 205 (Suppl. 2), S191S198.Google Scholar
Günal, M. and Pidd, M. (2010). Discrete event simulation for performance modelling in health care: a review of the literature. Journal of Simulation 4, 4251.Google Scholar
Hopkins, H., González, I. J., Polley, S. D., Angutoko, P., Ategeka, J., Asiimwe, C., Agaba, B., Kyabayinze, D. J., Sutherland, C. J., Perkins, M. D. and Bell, D. (2013). Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. Journal of Infectious Diseases 208, 645652.Google Scholar
International Monetary Fund (2013). World Economic Outlook Database.Google Scholar
Koroma, J. B., Bangura, M. M., Hodges, M. H., Bah, M. S., Zhang, Y. and Bockarie, M. J. (2012). Lymphatic filariasis mapping by immunochromatographic test cards and baseline microfilaria survey prior to mass drug administration in Sierra Leone. Parasite and Vectors 5, 10.Google Scholar
Langley, I., Doulla, B., Lin, H., Millington, K. A. and Squire, S. B. (2012). Modelling the impacts of new diagnostic tools for tuberculosis in developing countries to enhance policy decisions. Health Care Management Science 15, 239253.Google Scholar
Lin, H., Langley, I., Mwenda, R., Doulla, B., Egwaga, S., Millington, K. A., Mann, G. H., Murray, M., Squire, S. B. and Cohen, T. (2011). A modelling framework to support the selection and implementation of new tuberculosis diagnostic tools. International Journal of Tuberculosis and Lung Disease 15, 9961004.CrossRefGoogle ScholarPubMed
Mann, G., Squire, S. B., Bissell, K., Eliseev, P., Du Toit, E., Hesseling, A., Nicol, M., Detjen, A. and Kritski, K. (2010). Beyond accuracy: creating a comprehensive evidence base for TB diagnostic tools. International Journal of Tuberculosis and Lung Disease 14, 15181524.Google Scholar
Matovu, E., Kazibwe, A. J., Mugasa, C. M., Ndungu, J. M. and Njiru, Z. K. (2012). Towards point-of-care diagnostic and staging tools for human African trypanosomiaisis. Journal of Tropical Medicine 2012, 340538.Google Scholar
Mouatcho, J. C. and Goldring, J. P. D. (2013). Malaria rapid diagnostic tests: challenges and prospects. Journal of Medical Microbiology 62, 14911505.Google Scholar
Polley, S. D., Mori, Y., Watson, J., Perkins, M. D., González, I. J., Notomi, T., Chiodini, P. L. and Sutherland, C. J. (2010). Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. Journal of Clinical Microbiology 48, 28662871.Google Scholar
Ponder, E. L., Freundlich, J. S., Sarker, M. and Ekins, S. (2014). Computational models for neglected diseases: gaps and opportunities. Pharmaceutical Research 31, 271277.Google Scholar
Ramsay, A., Yassin, M. A., Cambanis, A., Hirao, S., Almotawa, A., Gammo, M., Lawson, L., Arbide, I., Al-Aghbari, N., Al-Sonboli, N., Sherchand, J. B., Gauchan, P. and Cuevas, L. E. (2009). Front-loading sputum microscopy services: an opportunity to optimise smear-based case detection of tuberculosis in high prevalence countries. Journal of Tropical Medicine 2009, 398767.CrossRefGoogle ScholarPubMed
Schünemann, H. J., Oxman, A. D., Brozek, J., Glasziou, P., Jaeschke, R., Vist, G. E., Williams, J. W. Jr., Kunz, R., Craig, J., Montori, V. M., Bossuyt, P. and Guyatt, G. H. (2008). GRADE working group. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. British Medical Journal 336, 11061110.Google Scholar
Squire, S. B., Ramsay, A., Van den Hof, S., Millington, K. A., Langley, I., Bello, G., Kritski, A., Detjen, A., Thomson, R., Cobelens, F. and Mann, G. (2011). Making innovations accessible to the poor through implementation by research. International Journal of Tuberculosis and Lung Disease 15, 19.Google Scholar
Steingart, K. R., Schiller, I., Horne, D. J., Pai, M., Boehme, C. C. and Dendukuri, N. (2014). Editorial Group: Cochrane Infectious Diseases Group Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Review. Published online: 21 Jan 2014. Assessed as up-to-date: 7 Feb 2013. doi: 10.1002/14651858.CD009593.pub3.Google Scholar
Stothard, J. R. (2009). Improving control of African schistosomiasis: towards effective use of rapid diagnostic tests within an appropriate disease surveillance model. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 325332.CrossRefGoogle ScholarPubMed
Stothard, J. R., Nabatte, B., Sousa-Figueiredo, J. C. and Kabatereine, N. B. (2014). Towards malaria microscopy at the point-of-contact: an assessment of the diagnostic performance of the Newton Nm1 microscope in Uganda. Parasitology.Google Scholar
Theron, G., Peter, J., Dowdy, D., Langley, I., Squire, S. B. and Dheda, K. (2014). Do high rates of empirical treatment undermine the potential effect of new diagnostic tests for tuberculosis in high-burden settings? Lancet Infectious Diseases. Published online 15 January 2014. doi: 10.1016/S1473-3099(13)70360-8.Google Scholar
Wongsrichanalai, C., Barcus, M. J., Muth, S., Sutamihardja, A. and Wernsdorfer, W. H. (2007). A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). American Journal of Tropical Medicine and Hygiene 77, 119127.Google Scholar
World Health Organization (2011 a). Same-Day Diagnosis of Tuberculosis by Microscopy: Policy Statement. World Health Organization, Geneva, Switzerland.Google Scholar
World Health Organization (2011 b). Policy Statement: Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System. World Health Organization, Geneva, Switzerland.Google Scholar