Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:36:10.230Z Has data issue: false hasContentIssue false

Phagocytosis of microvilli of the metacestode of Hymenolepis diminuta by Tenebrio molitor haemocytes

Published online by Cambridge University Press:  06 April 2009

K.Sylvia Richards
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG

Extract

A limited number of metacestodes of Hymenolepis diminuta from Tenebrio molitor had host plasmatocytes and cell debris of coagulocyte origin associated with the microvillar surface. There was evidence of phagocytosis of microvilli by plasmatocytes, involving clathrin-like endocytotic vesicles. In contrast to these otherwise ‘normal’ cysticercoids, occasional batches were ‘sticky’ and, on flushing into saline, rapidly developed large bladders possibly associated with osmotic stress. In addition, numerous small surface blebs were present. These ‘surface-stressed’ cysticercoids also had host plasmatocytes and cell debris associated with the bladder bases and the blebs, and phagocytosis of microvilli was observed. In no case had precipitation of haemolymph, melanization or encapsulation (features typical of the insect immune response) occurred. The possibility that the limited host response indicates a spatially restricted impairment of the surface compatibility of the parasite, and thus insufficient to elicit the full immune response, is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grégoire, Ch. & Goffinet, G. (1979). Controversies about the coagulocyte. In Insect Hemocytes (ed. Gupta, A. A.), pp. 189229. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Heyneman, D. & Voge, M. (1971). Host-response of the flour-beetle, Tribolium confusum, to infections with Hymenolepis diminuta, H. microstoma and H. citelli (Cestoda: Hymenolepidae). Journal of Parasitology 57, 881–6.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1982). Hymenolepis diminuta: uptake of amino acids by the cysticercoid larva. Parasitology 85, xxiv.Google Scholar
Krasnoshchekov, G. P., Moczoń, T. & Pluzhnikov, L. T. (1979). Ultrastructure of the cyst of Hymenolepis diminuta larvae. Folia Parasitologica (Praha) 26, 245–51.Google Scholar
Lackie, A. M. (1976). Evasion of the haemocytic defence reaction of certain insects by larvae of Hymenolepis diminuta (Cestoda). Parasitology 73, 97107.Google Scholar
Lackie, A. M. (1979). Cellular recognition of foreign-ness in two insect species, the American cockroach and the desert locust. Immunology 36, 909–14.Google ScholarPubMed
Lackie, A. M. (1981 a). Immune recognition in insects. Developmental and Comparative Immunology 5, 191204.Google Scholar
Lackie, A. M. (1981 b). Humoral mechanisms in the immune response of insects to larvae of Hymenolepis diminuta (Cestoda). Parasite Immunology 3, 201–8.Google Scholar
Lackie, A. M. (1981 c). The specificity of the serum agglutinins of Periplaneta americana and Schistocerca gregaria and its relationship to the insects' immune response. Journal of Insect Physiology 27, 139–43.Google Scholar
Lackie, A. M. (1983). Effect of substratum wettability and charge on adhesion in vitro and encapsulation in vivo by insect haemocytes. Journal of Cell Science 63, 181–90.CrossRefGoogle ScholarPubMed
Marschall, K. J. (1966). Bau und Funktionen der Blutzellen des Mehlkäfers Tenebrio molitor L. Zeitschrift für Morphologie und Ökologie der Tiere 58, 182246.CrossRefGoogle Scholar
Oaks, J. A. & Lumsden, R. D. (1971). Cytochemical studies on the absorptive surfaces of cestodes. V. Incorporation of carbohydrate-containing macromolecules into tegument membranes. Journal of Parasitology 57, 1256–68.CrossRefGoogle Scholar
Phillips, A. A. & Arme, C. (1983). Hymenolepis diminuta: monosaccharide transport by cysticercoids. Parasitology 87, lxiii.Google Scholar
Ratcliffe, N. A. (1982). Cellular defence reactions of insects. In Immune Reastions to Parasites. Fortschritte der Zoologie, Band 27, Suppl. 12, pp. 223–44. Stuttgart, New York: Gustav Fischer Verlag.Google Scholar
Ratcliffe, N. A. & Rowley, A. F. (1979). Role of haemocytes in defence against biological agents. In Insect Hemocytes (ed. Gupta, A. R.), pp. 331414. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ratner, S. & Vinson, S. B. (1983). Phagocytosis and encapsulation: cellular immune responses in Arthropoda. American Zoologist 23, 185–94.CrossRefGoogle Scholar
Richards, K. S. & Arme, C. (1983 a). The rostellar tegumentary cytoplasm of the metacestode of Hymenolepis diminuta (Cyclophyllidea: Cestoda). Parasitology 86, 83–8.CrossRefGoogle ScholarPubMed
Richards, K. S. & Arme, C. (1983 b). Junctional complexes in the inner cyst tissue of the cysticercoid of Hymenolepis diminuta (Cestoda). Parasitology. 87, 296306.Google Scholar
Richards, K. S. & Arme, C. (1984 a). Maturation of the scolex syncytium in the metacestode of Hymenolepis diminuta, with special reference to microthrix formation. Parasitology 88, 341–9.CrossRefGoogle Scholar
Richards, K. S. & Arme, C. (1984 b). An ultrastructural analysis of cyst well development in the metacestode of Hymenolepis diminuta (Cestoda). Parasitology 89, 537–66.CrossRefGoogle Scholar
Rowley, A. F. (1977). The role of the haemocytes of Clitumnus extradentatus in haemolymph coagulation. Cell and Tissue Research 182, 513–24.CrossRefGoogle ScholarPubMed
Rowley, A. F. & Ratcliffe, N. A. (1981). Insects. In Invertebrate Blood Cells, vol. 2 (ed. Ratcliffe, N. A. and Rowley, A. F.), pp. 421–88. London: Academic Press.Google Scholar
Schmit, A. R. & Ratcliffe, N. A. (1977). The encapsulation of foreign tissue implants in Galleria mellonella larvae. Journal of Insect Physiology 23, 175–84.Google Scholar
Stang-Voss, C. (1970). Zur Ultrastruktur der Blutzellen wirbelloser Tiere. I. Über die Haemocyten der Larve der Mehlkäfers Tenebrio molitor L. Zellschrift für Zellforschung und mikroscopische Anatomie 103, 589605.CrossRefGoogle ScholarPubMed
Ubelaker, J. E. (1980). Structure and ultrastructure of the larvae and metacestodes of Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta, (ed. Arai, H. P.), pp. 59156. London: Academic Press.Google Scholar
Ubelaker, J. E., Cooper, N. B. & Allison, V. (1970 a). Possible defensive mechanism of Hymenolepis diminuta cysticercoids to haemocytes of the beetle Tribolium confusum. Journal of Invertebrate Pathology 16, 310–12.CrossRefGoogle Scholar
Ubelaker, J. E., Cooper, N. B. & Allison, V. F. (1970 b). The fine structure of the cysticercoid of Hymenolepis diminuta. 1. The outer wall of the capsule. Zeitschrift für Parasitenkunde 34, 258–70.CrossRefGoogle Scholar