Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T07:50:56.789Z Has data issue: false hasContentIssue false

Phylogeny, evolution and host–parasite relationships of the order Proteocephalidea (Eucestoda) as revealed by combined analysis and secondary structure characters

Published online by Cambridge University Press:  02 November 2004

V. HYPšA
Affiliation:
Faculty of Biological Sciences, University of South Bohemia and Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
A. šKEŘÍKÓVA
Affiliation:
Faculty of Biological Sciences, University of South Bohemia and Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
T. SCHOLZ
Affiliation:
Faculty of Biological Sciences, University of South Bohemia and Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic

Abstract

In a manner similar to many other groups of organisms, the tapeworm order Proteocephalidea poses a difficult phylogenetic problem if treated on the basis of single-gene analysis. Since the biogeography and host distribution of proteocephalideans make these tapeworms a potentially interesting model for evolutionary and co-evolutionary studies, we tried to resolve their phylogenetic relationships by applying a multi-gene approach. The ITS2 sequences and V4 hypervariable loop of 18S rRNA were obtained for 43 and 35 proteocephalidean taxa, respectively, and combined with other sequences available in the GenBank. The phylogenetic analysis of the combined DNA set was confronted with characters derived from ITS2 secondary structures. Using this approach, a species-rich Neotropical lineage of proteocephalideans could be reliably resolved. The phylogenetic relationships within this group show a high degree of phylogeny-independent host distribution. The reconstruction of ITS2 secondary structure revealed a universal 4-domain arrangement, which is conserved across a wide range of Neodermata. Several motifs of the secondary structure could be mapped to the phylogenetic tree as possible clade synapomorphies.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BANARESCU, P. ( 1990). Zoogeography of Freshwaters. Aula Verlag, Wiesbaden, Germany.
CAÑEDA-GUZMÁN, I. C., de CHAMBRIER, A. & SCHOLZ, T. ( 2001). Thaumasioscolex didelphidis n. gen. and n. sp. (Cestoda: Proteocephalidae) from the black-eared opossum Didelphis marsupialis from Mexico, the first proteocephalidean tapeworm from a mammal. Journal of Parasitology 87, 639647.Google Scholar
CUNNINGHAM, C. O., ALIESKY, H. & COLLINS, C. M. ( 2000). Sequence and secondary structure variation in the Gyrodactylus (Platyhelminthes: Monogenea) ribosomal RNA gene array. Journal of Parasitology 86, 567576.CrossRefGoogle Scholar
de CHAMBRIER, A. & VAUCHER, C. ( 1997). Révision des cestodes (Monticelliidae) décrits par Woodland (1934) chez Brachyplatystoma filamentosum avec redéfinition des genres Endorchis Woodland, 1934 et Nomimoscolex Woodland, 1934. Systematic Parasitology 37, 219233.CrossRefGoogle Scholar
de CHAMBRIER, A. & VAUCHER, C. ( 1999). Proteocephalidae et Monticelliidae (Eucestoda: Proteocephalidea) parasites de poissons d'eau douce au Paraguay, avec descriptions d'un genre nouveau et de dix espèces nouvelles. Revue Suisse de Zoologie 106, 165240.CrossRefGoogle Scholar
de CHAMBRIER, A., ZEHNDER, A., VAUCHER, C. & MARIAUX, J. ( 2004). The evolution of the proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Systematic Parasitology 57, 159171.CrossRefGoogle Scholar
DE RIJK, P., WUYTS, J. & DE WACHTER, R. ( 2003). RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19, 299300.CrossRefGoogle Scholar
DUQUE, A. B. & WINEMILER, K. O. ( 2003). Dietary segregation among large catfishes of the Apure and Arauca Rivers, Venezuela. Journal of Fish Biology 63, 410427.CrossRefGoogle Scholar
FALAVIGNA, D. L. M., VELHO, L. F. M. & PAVANELLI, G. C. ( 2003). Proteocephalidean larvae (Cestoda) in naturally infected cyclopid copepods of Upper Paraná River floodplain, Brazil. Memorias do Instituto Oswaldo Cruz 98, 6972.CrossRefGoogle Scholar
FREZE, V. I. ( 1965). Proteocephalids–Tapeworm Helminths of Fish, Amphibians and Reptiles. Essentials of Cestodology, Vol. V. Publishing House Nauka, Moscow.
GOTTSCHLING, M. & PLÖTNER, J. ( 2004). Secondary structure models of the nuclear internal transcribed spacer regions and 5·8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Research 32, 307315.CrossRefGoogle Scholar
HALL, T. A. ( 1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
HUNTER, G. W. ( 1928). Contribution to the life-history of Proteocephalus ambloplitis (Leidy). Journal of Parasitology 14, 229242.CrossRefGoogle Scholar
HUNTER, G. W. & HUNNINEN, A. V. ( 1934). Studies on the plerocercoid larva of the bass tapeworm, Proteocephalus ambloplitis (Leidy), in the small-mouthed bass. Supplement of the 23rd Annual Report. New York State Conservation Department, 1933, No. 8, 255261.
JOSEPH, N., KRAUSKOPF, E. & MICHOT, B. ( 1999). Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core secondary structure in vertebrates and yeast. Nucleic Acids Research 27, 45334540.CrossRefGoogle Scholar
KODEDOVÁ, I., DOLEŽEL, D., BROUČKOVÁ, M., JIRKŮ, M., HYPšA, V., LUKEš, J. & SCHOLZ, T. ( 2000). On the phylogenetic position of the Caryophyllidea, Pseudophyllidea and Proteocephalidea (Eucestoda) inferred from 18S rDNA. International Journal for Parasitology 30, 11091113.CrossRefGoogle Scholar
OLIVERIO, M., CERVELLI, M. & MARIOTTINI, P. ( 2002). ITS2 rRNA evolution and its congruence with phylogeny of muricid neogastropods (Caenogastropoda, Muricidae). Molecular Phylogenetics and Evolution 25, 6369.CrossRefGoogle Scholar
OLSON, P. D., LITTLEWOOD, D. T., BRAY, R. A. & MARIAUX, J. ( 2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443467.CrossRefGoogle Scholar
REGO, A. A. ( 1994). Order Proteocephalidea Mola, 1928. In Keys to the Cestode Parasites of Vertebrates (ed. Khalil, L. F., Jones, A. & Bray, R. A.), pp. 257293. CAB International, Wallingford, Oxon, UK.
REGO, A. A. & PAVANELLI, G. C. ( 1990). Novas espécies de cestóides proteocefalídeos parasitas de peixes năo Siluriformes. Revista Brasileira de Biologia 50, 91101.Google Scholar
REGO, A. A., DE CHAMBRIER, A., HANZELOVÁ, V., HOBERG, E., SCHOLZ, T., WEEKES, P. & ZEHNDER, M. ( 1998). Preliminary phylogenetic analysis of subfamilies of the Proteocephalidea (Eucestoda). Systematic Parasitology 40, 119.CrossRefGoogle Scholar
SCHMIDT, G. D. ( 1986). Handbook of Tapeworm Identification. CRC Press, Boca Raton, Florida.
SCHOLZ, T. ( 1999). Parasites in cultured and feral fish. Veterinary Parasitology 84, 317335.CrossRefGoogle Scholar
SCHOLZ, T. & de CHAMBRIER, A. ( 2003). Taxonomy and biology of the proteocephalidean cestodes: current state and perspectives. Helminthologia 40, 6577.Google Scholar
SCHOLZ, T., šKEŘÍKOVÁ, A., HANZELOVÁ, V., KOUBKOVÁ, B. & BARUš, V. ( 2003). Resurrection of Proteocephalus sagittus (Grimm, 1872) (Cestoda: Proteocephalidea) based on morphological and molecular data. Systematic Parasitology 56, 173181.CrossRefGoogle Scholar
SWOFFORD, D. L. ( 1998). PAUP 4.0-Phylogenetic Analysis using Parsimony. Version 4. Sinauer Associates, Sunderland, Massachusetts.
šKEŘÍKOVÁ, A., HYPšA, V. & SCHOLZ, T. ( 2001). Phylogenetic analysis of European species of Proteocephalus (Cestoda: Proteocephalidea): compatibility of molecular and morphological data, and parasite-host coevolution. International Journal for Parasitology 31, 11211128.CrossRefGoogle Scholar
THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F., JEANMOUGIN, F. & HIGGINS, D. G. ( 1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
WUYTS, J., DE RIJK, P., VAN DE PEER, Y., PISON, G., ROUSSEEUW, P. & DE WACHTER, R. ( 2000). Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Research 28, 46984708.CrossRefGoogle Scholar
XIA, X. ( 2000). DAMBE: Data Analysis in Molecular Biology and Evolution. Department of Ecology and Biodiversity, University of Hong Kong.
YAMAGUTI, S. ( 1959). Systema Helmintum, Vol. 2. The Cestodes of Vertebrates. Interscience Publishers, Inc., New York.
ZEHNDER, M. P. & de CHAMBRIER, A. ( 2000). Morphological and molecular analyses of the genera Peltydocotyle Diesing 1850 and Othinoscolex Woodland 1933, and a morphological study of Woodlandiella Freze, 1965 (Eucestoda, Proteocephalidea), parasites of South American siluriform fishes (Pimelodidae). Systematic Parasitology 46, 3344.CrossRefGoogle Scholar
ZEHNDER, M. P., de CHAMBRIER, A., VAUCHER, C. & MARIAUX, J. ( 2000). Nomimoscolex suspectus n. sp. (Eucestoda: Proteocephalidea, Zygobothriinae) with morphological and molecular phylogenetic analysis of the genus. Systematic Parasitology 47, 157172.Google Scholar
ZEHNDER, M. P. & MARIAUX, J. ( 1999). Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. International Journal for Parasitology 29, 18411852.CrossRefGoogle Scholar