Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T12:34:11.990Z Has data issue: false hasContentIssue false

Physiology and pharmacology of turbellarian neuromuscular systems

Published online by Cambridge University Press:  06 April 2009

K. L. Blair
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32086, USA Department of Biological Sciences and Center for Research in Environmental Signal Transduction, University of Western Michigan, Kalamazoo, MI 49008, USA
P. A. V. Anderson
Affiliation:
Whitney Laboratory, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32086, USA

Summary

Our understanding of the neurobiology of the Platyhelminthes has come in large part from free-living turbellarians. In addition to providing considerable information about the capabilities of the rudimentary nervous system present in all members of the phylum, turbellarians have provided the most definitive information about the variety of ion channels present in the membranes of neurones and muscle cells, and about the physiology and pharmacology of those channels. Furthermore, preparations of single, viable muscle cells have provided some of the most conclusive evidence about the variety of transmitters present, and the types of response they evoke. Here, we review what is known about the physiology and pharmacology of the turbellarian neuromuscular system. Particular attention is given to the triclad flatworm Bdelloura Candida, the best studied species in this respect, but other species are included where relevant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, P. A. V. (1987). Properties and pharmacology of a TTX-insensitive Na+ current in neurones of the jellyfish Cyanea capillata. Journal of Experimental Biology 133, 231–48.CrossRefGoogle Scholar
Algeri, S., Carolei, A.Ferretti, P., Gallone, C., Palladini, G. & Venturini, G. (1983). Effects of dopaminergic agonists on monoamine levels and motor behaviour in planaria. Comparative Biochemistry & Physiology 74C, 27–9.Google Scholar
Bautz, A. & Schilt, J. (1986). Somatostatin-like peptide and regeneration capacities in planarians. General & Comparative Endocrinology 64, 267–72.CrossRefGoogle ScholarPubMed
Blair, K. L. & Anderson, P. A. V. (1993). Properties of voltage-activated ionic currents in cells from the brains of the triclad flatworm Bdelloura Candida. Journal of Experimental Biology 185, 267–86.CrossRefGoogle Scholar
Blair, K. L. & Anderson, P. A. V. (1994). Physiological and pharmacological properties of muscle cells isolated from the flatworm Bdelloura Candida (Tricladia). Parasitology 109, 325–35.Google Scholar
Bullock, T. H. & Horridge, G. A. (1965). Structure and Function in the Nervous Systems of Invertebrates, Vol. I. San Francisco: W. H. Freeman and Co.Google Scholar
Corning, W. C., & Kelly, S. (1973). Platyhelminthes: the Turbellarians. In Invertebrate Learning. Vol 1 (eds. Corning, W. C, Dyal, J. A. & Willows, A. O. D.), pp. 171224. New York: Plenum Press.CrossRefGoogle Scholar
Creti, P., Capasso, A., Grasso, M. & Parisi, E. (1992). Identification of a 5-HT1A receptor positively coupled to planarian adenylate cyclase. Cell Biology International Reports 16, 427–33.CrossRefGoogle ScholarPubMed
Curry, W. J., Shaw, C., Johnston, C. F., Thim, L. & Buchanan, K. D. (1992). Neuropeptide F: Primary structure from the turbellarian, Artioposthia triangulata. Comparative Biochemistry & Physiology 101C, 269–74.Google Scholar
Davis, R. E. & Stretton, A. O. W. (1989). Signaling properties of Ascaris motorneurons: Graded active responses, graded synaptic transmission, and tonic transmitter release. Journal of Neuroscience 9, 415–25.CrossRefGoogle ScholarPubMed
Day, T. A., Ghen, G-Z., Miller, C., Tian, M., Bennett, J. L. & Pax, R. A. (1996). Cholinergic inhibition of muscle fibers isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology (in press).Google Scholar
Dubas, F., Stein, P. G. & Anderson, P. A. V.(1988). Ionic currents of smooth muscle cells isolated from the ctenophore Mnemiopsis. Proceedings of the Royal Society of London B 233, 99121.Google ScholarPubMed
Ehlers, U.. (1986). Comments on a phylogenetic system of the platyhelminths. Hydrobiologia 132, 112.CrossRefGoogle Scholar
Elvin, M. & Koopowitz, H. (1994). Neuroanatomy of the rhabdocoel flatworm Mesostoma ehrenbergii (Focke, 1986). I. Neuronal diversity in the brain. Journal of Comparative Neurology 343, 319–31.CrossRefGoogle ScholarPubMed
Eriksson, K. S. & Panula, P. L. (1994). Gamma-amino butyric acid in the nervous system of a planarian. Journal of Comparative Neurology 345, 528–36.CrossRefGoogle Scholar
Erzen, I. & Brzin, M. (1979). Cholinergic mechanisms in Planaria torva. Comparative Biochemistry &Physiology 64C, 207–16.Google Scholar
Franquinet, R., Lemoigne, A. & Hanoune, J. (1978). The adenylate cyclase system Polycelis tenuis of planaria. Biochimica et Biophysica Acta 539, 8897.CrossRefGoogle ScholarPubMed
Friedel, T. & Webb, R. A. (1979). Stimulation of mitosis in Dugesia tigrina by a neurosecretory fraction. Canadian Journal of Zoology 57, 1818–9.CrossRefGoogle ScholarPubMed
Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J. & Garcia, M. L. (1990). Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of, Buthus tamulus the scorpion. Journal of Biological Chemistry 265, 11083–90.CrossRefGoogle ScholarPubMed
Greenberg, R. M., Clark, K. S., Jeziorski, M. C., White, G. B. & Anderson, P. A. v. (1995). Structure of calcium channel α1 subunits from cnidarians and platyhelminthes. Society for Neuroscience Abstracts 21, 1571.Google Scholar
Grimmelikhuijzen, C. J. P., Graff, D. & Mcfarlane, I. D. (1989). Neurones and neuropeptides in coelenterates. Archives of Histology & Cytology 52, 265–76.CrossRefGoogle ScholarPubMed
Hille, B. (1984). Ionic Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer Associates, Inc.Google Scholar
Holman, M. A. & Anderson, P. A. V. (1991). Voltage-gated ionic currents in myoepithelial cells isolated from the sea Calliactis tricoloranemone. Journal of Experimental Biology 161, 333–46.CrossRefGoogle Scholar
Jeziorski, M. C., Greenberg, R. M. & Anderson, P. A. V. (1995). Identification of a partial cDNA encoding a putative voltage-gated sodium channel from the parasitic Bdelloura Candidaflatworm. Society for Neuroscience Abstracts 21, 1823.Google Scholar
Johnston, R. N., Shaw, C., Halton, D. W., Verhaert, P. L. & Baguna, J. (1995). GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochemical & Biophysical Research Communications 209, 689–97.CrossRefGoogle ScholarPubMed
Johnston, R. N., Shaw, C., Halton, D. W., Verhaert, P., Blair, K. L., Brennan, G. P., Price, D. A. & Anderson, P. A. v. (1996). Isolation, localization and bioactivity of the FMRFamide-related neuropeptides GYIRFamide and YIRFamide from the marine turbellarian, Bdelloura Candida. Journal of Neurochemistry 67, 814–21.CrossRefGoogle ScholarPubMed
Keenan, L. & Koopowitz, H. (1981). Tetrodotoxin-sensitive action potentials from the brain of the Notoplana acticolapolyclad flatworm. Journal of Experimental Zoology 215, 209–13.CrossRefGoogle Scholar
Keenan, L. & Koopowitz, H. (1984). Ionic basis of action potential in identified flatworm neurons. Journal of Comparative Physiology A 155, 197208.CrossRefGoogle Scholar
Keenan, L., Koopowitz, H. & Bernardo, K. (1979). Primitive nervous systems: Action of aminergic drugs and blocking agents on activity in the ventral nerve cord of the Notoplana acticolaflatworm. Journal of Neurobiology 10, 397407.CrossRefGoogle Scholar
Koopowitz, H. (1982). Free-living Platyhelminthes. In Electrical Conduction and Behavior in ‘Simple’ Invertebrates (ed. Shelton, G. A. B.), pp. 359392. Oxford: Clarendon Press.Google Scholar
Koopowitz, H. (1986). On the evolution of central nervous systems: implications from polyclad turbellarian neurobiology. Hydrobiologia 132, 7987.CrossRefGoogle Scholar
Koopowitz, H. (1989). Polyclad neurobiology and the evolution of the central nervous system. In Evolution of the First Nervous Systems (ed. Anderson, P. A. V.), pp. 315–28, New York: Plenum Press.CrossRefGoogle Scholar
Martelly, I. & Franquinet, R. (1984). Planarian regeneration as a model for cellular activation studies. Trends in Biochemical Sciences 9, 468–71.CrossRefGoogle Scholar
Martelly, I., Moraczewski, J., Franquinet, R. & Castagna, M. (1987). Protein kinase C activity in a freshwater planarian (Dugesia gonocephala). Comparative Biochemistry & Physiology 86B, 405–9.Google Scholar
Maule, A. G., Shaw, C., Halton, D. W., Curry, W. J. & Thim, L. (1994). RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.CrossRefGoogle ScholarPubMed
Mcclintock, T. s. & Ache, B. W. (1989). Ionic currents and ion channels of lobster olfactory receptor cells. Journal of General Physiology 94, 1085–99.CrossRefGoogle Scholar
Morris, C. W. (1993). The fossil record and the early evolution of the Metazoa. Nature 361, 219–25.CrossRefGoogle Scholar
Pike, A. W. & Wink, R. (1986). Aspects of photoreceptor structure and phototactic behaviour in Platyhelminthes, with particular references to the symbiotic turbellarian Paravortex. Hydrobiologia 132, 101–4.CrossRefGoogle Scholar
Reuter, M. & Gustafsson, M. (1989). Neuroendocrine cells in flatworms - progenitors to metazoan neurons. Archives of Histology & Cytology 52, 253–63.CrossRefGoogle ScholarPubMed
Rieger, R. M., Tyler, S., IIISmith, J. P. S. & Rieger, G. E. (1991). Platyhelminthes: Turbellaria. In Microscopic Anatomy of Invertebrates, Vol. 3 (ed. Harrison, F. W. & Bogitsh, B. J.), pp. 7140. New York: Wiley-Liss, Inc.Google Scholar
Solon, M. & Koopowitz, H. (1982). Multimodal interneurones in the polyclad flatworm, Alleoplana californica. Journal of Comparative Physiology A 147, 171–8.CrossRefGoogle Scholar
Spafford, J. D., Grigoriev, N. G. & Spencer, A. N. (1996). Pharmacological properties of the voltage-gated Na+ currents in motor neurones from a hydrozoan jellyfish Polyorchis pennicilatus. Journal of Experimental Biology 199, 941–8.CrossRefGoogle Scholar
Spencer, A. N. (1989). Neuropeptides in the Cnidaria. American Zoologist 29, 1213–25.CrossRefGoogle Scholar
Steele, V. E. & Lange, C. S. (1977). Characterization of an organ-specific differentiator substance in the planarian Dugesia etrusca. Journal of Embryology & Experimental Morphology 37, 159–72.Google ScholarPubMed
Venturini, G., Stocchi, F., Margotta, V., Ruggieri, S., Bravi, D., Bellantuono, P. & Palladini, G. (1989). A pharmacological study of dopaminergic receptors in planaria. Neuropharmacology 28, 1377–82.CrossRefGoogle ScholarPubMed
Welsh, J. H. & Williams, L. D. (1970). Monoamine containing neurons in planaria. Journal of Comparative Neurology 138, 103–16.CrossRefGoogle ScholarPubMed
Wolff, E. (1974). Analysis of substance inhibiting regeneration of freshwater planarians. In Biology of Turbellaria (ed. Riser, N. W. & Morse, H. P.), pp. 446–59. New York: McGraw Hill.Google Scholar