Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T07:49:24.541Z Has data issue: false hasContentIssue false

Plasmodium falciparum lacks sialidase and trans-sialidase activity

Published online by Cambridge University Press:  06 April 2009

B. Clough*
Affiliation:
Department of Infection and Tropical Medicine, Imperial College School of Medicine, Northwick Park Hospital, Middlesex HA 1 3UJ, UK
F. A. Atilola
Affiliation:
Department of Infection and Tropical Medicine, Imperial College School of Medicine, Northwick Park Hospital, Middlesex HA 1 3UJ, UK
N. Healy
Affiliation:
Glaxo Research and Development Ltd, Stevenage, Hertfordshire, UK
M. E. A. Pereira
Affiliation:
Tropical Diseases Research Unit, Tupper Research Institute, Tufts-New England Medical Centre Hospitals, Boston, Massachusetts, USA
R. C. Bethell
Affiliation:
Glaxo Research and Development Ltd, Stevenage, Hertfordshire, UK
C. R. Penn
Affiliation:
Glaxo Research and Development Ltd, Stevenage, Hertfordshire, UK
G. Pasvol
Affiliation:
Department of Infection and Tropical Medicine, Imperial College School of Medicine, Northwick Park Hospital, Middlesex HA 1 3UJ, UK
*
* Corresponding author.

Summary

Sialic acid on the red cell surface plays a major role in invasion by the malaria parasite Plasmodium falciparum. The NeuAc(α2,3) Gal motif on the O-linked tetrasaccharides of the red cell glycophorins is a recognition site for the parasite erythrocyte-binding antigen (EBA-175). Consequently, the interaction of P. falciparum and the red cell might share homology with that of the influenza virus. The cellular interactions of P. falciparum were examined for their sensitivity to 4-guanidino-2,3-didehydro-D-N-acetyl neuraminic acid (4-guanidino Neu5Ac2en), a potent inhibitor of influenza virus sialidase. Parasite invasion and subsequent development was unaffected by the sialidase inhibitor. The inhibitor did not affect rosette formation of parasite-infected erythrocytes with uninfected cells nor their cytoadherence to C32 melanoma cells. Furthermore, we were unable to confirm the presence of a previously reported parasite sialidase using sensitive fluorometric or haemagglutination assays, neither was any malarial trans-sialidase identified. We conclude that P. falciparum possesses neither sialidase nor trans-sialidase activity and that an inhibitor of influenza virus sialidase has no effect on important cellular interactions of this parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Yaman, F., Genton, B., Mokela, D., Raiko, A., Kati, S., Rogerson, S., Reeder, J. & Alpers, M. (1995). Human cerebral malaria: lack of significant association between erythrocyte rosetting and disease severity. Transactions of the Royal Society of Tropical Medicine and Hygiene 89, 55–8.CrossRefGoogle ScholarPubMed
Dluzewski, A. R., Ling, I. T., Rangachari, K., Bates, P. A. & Wilson, R. J. M. (1984). A simple method for isolating viable mature parasites of Plasmodium falciparum from cultures. Transactions of the Royal Society for Tropical Medicine and Hygiene 78, 622–4.CrossRefGoogle ScholarPubMed
Hadley, T. J., Klotz, F. W., Pasvol, G., Haynes, J. D., McGinnis, M. H., Okubo, Y. & Miller, L. H. (1987). Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Journal of Clinical Investigation 80, 1190–3.CrossRefGoogle Scholar
Howard, R. J. (1982). Alterations in the surface membrane of red blood cells during malaria. Immunological Reviews 61, 67107.CrossRefGoogle ScholarPubMed
Howard, R. J., Brown, G. V., Smith, P. M., Mitchell, G. F., Stage, J. D., Alpers, M. P., Wember, M. & Schauer, R. (1981). Studies on malaria in Papua New Guinea. I. Comparison of the surface glycoproteins on red cells from infected and uninfected individuals. Parasitology 83, 357–72.CrossRefGoogle ScholarPubMed
MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. (1985). Human cerebral malaria: a quantitative structural analysis of parasitised erythrocyte sequestration. American Journal of Pathology 119, 385401.Google Scholar
Makler, M. T. (1987). P. falciparum invasion of human red cells and cytoadherence to endothelial cells is dependent upon a parasite produced glycosidase. Biochemical and Biophysical Research Communications 143, 461–6.CrossRefGoogle ScholarPubMed
Marsh, K., Otoo, L., Hayes, R. J., Carson, D. C. & Greenwood, B. M. (1989). Antibodies to blood stage antigens of Plasmodium falciparum and their relation to protection against infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 293303.CrossRefGoogle ScholarPubMed
Mitchell, G. H., Hadley, T. J., McGinnis, M. H., Klotz, F. W. & Miller, L. H. (1986). Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. CRC Critical Reviews in Oncology/Haematology 8, 225310.Google Scholar
Orlandi, P. A., Klotz, F. W. & Haynes, J. D. (1992). A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognises the terminal Neu5Ac(a2–3)Gal-sequences of glycophorin A. Journal of Cell Biology 116, 901–9.CrossRefGoogle ScholarPubMed
Pasvol, G., Jungery, M., Weatherall, D. J., Parsons, S. F., Anstee, D. J. & Tanner, M. J. A. (1982 b). Glycophorin as a possible receptor for Plasmodium falciparum. Lancet 2, 947–50.CrossRefGoogle ScholarPubMed
Pasvol, G., Wainscoat, J. S. & Weatherall, D. J. (1982 a). Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature, London 297, 64–6.CrossRefGoogle ScholarPubMed
Pellegrin, J. L. J., Ortega-Barria, E., Prioli, R. P., Buerger, M., Strout, R. G., Alroy, J. & Pereira, M. E. A. (1993). Identification of a developmentally regulated sialidase in Eimeria tenella that is immunologically related to the Trypanosoma cruzi enzyme. Glycoconjugate Journal 10, 5763.CrossRefGoogle Scholar
Pereira, M. E. A. (1983 a). A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219, 1444–6.CrossRefGoogle ScholarPubMed
Pereira, M. E. A. (1983 b). A rapid and sensitive assay for neuraminidase using peanut lectin haemagglutination: application to Vibrio cholera and Trypanosoma cruzi. Journal of Immunological Methods 63, 2534.CrossRefGoogle ScholarPubMed
Potier, M., Mameli, L., Belisle, M., Dallaire, L. & Melancon, S. B. (1979). Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate. Analytical Biochemistry 94, 287–96.CrossRefGoogle ScholarPubMed
Schauer, R., Wember, M. & Howard, R. J. (1984). Malaria parasites do not contain or synthesise sialic acids. Hoppe-Seyler's Zeitschrift für physiologische Chemie 365, 185–94.CrossRefGoogle ScholarPubMed
Scudder, P., Doom, J. P., Chuenkova, M., Manager, I. D. & Pereira, M. E. A. (1993). Enzymatic characterization of β-D-galactoside a 2,3-trans-sialidase from Trypanosoma cruzi. Journal of Biological Chemistry 268, 9886–91.CrossRefGoogle ScholarPubMed
Sherman, I. w. & Jones, L. A. (1979). Plasmodium lophurae: Membrane proteins of erythrocyte-free plasmodia and malaria-infected red cells. Journal of Protozoology 26, 489501.CrossRefGoogle ScholarPubMed
Tracer, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.Google Scholar
Treutiger, C. J., Hedlund, I., Helmby, H., Carlson, J., Jepson, A., Twumasi, P., Kwaitkowski, D., Greenwood, B. M. & Wahlgren, M. (1992). Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. American Journal of Tropical Medicine and Hygiene 46, 503–10.CrossRefGoogle ScholarPubMed
Udomsangpetch, R., Wahlin, B., Carlson, J., Berzins, K., Torii, M., Aikawa, M., Perlmann, P. & Wahlgren, M. (1989). Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. Journal of Experimental Medicine 169, 1835–40.CrossRefGoogle ScholarPubMed
Von Itzstein, M., Wu, M. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M. & Penn, C. R. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, London 363, 418–23.CrossRefGoogle ScholarPubMed
Zouali, M., Druilhe, P., Gentilini, M. & Eyquem, A. (1982). High litres of anti-T antibodies and other haemagglutinins in human malaria. Clinical Experimental Immunology 50, 8391.Google Scholar