Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T13:24:53.686Z Has data issue: false hasContentIssue false

Plasmodium falciparum malaria disease manifestations in humans and transmission to Anopheles gambiae: a field study in Western Kenya

Published online by Cambridge University Press:  03 March 2004

L. C. GOUAGNA
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
H. M. FERGUSON
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh West Mains Road, Edinburgh, UK
B. A. OKECH
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya Department of Zoology, Kenyatta University, P.O. Box 43844, Nairobi, Kenya
G. F. KILLEEN
Affiliation:
Department of Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, CH.4002, Basel, Switzerland
E. W. KABIRU
Affiliation:
Department of Zoology, Kenyatta University, P.O. Box 43844, Nairobi, Kenya
J. C. BEIER
Affiliation:
University of Miami School of Medicine, Department of Epidemiology and Public Health Highland Professional Building, 1801 N.W. 9th Ave., Suite 300 (D-93), Miami, USA
J. I. GITHURE
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya Kenya Medical Research Institute, Nairobi, Kenya
G. YAN
Affiliation:
Department of Biological Sciences, State University of New York, Buffalo, NY14260 USA

Abstract

Transmission of the malaria parasite Plasmodium is influenced by many different host, vector and parasite factors. Here we conducted a field study at Mbita, an area of endemic malaria in Western Kenya, to test whether parasite transmission to mosquitoes is influenced by the severity of malaria infection in its human host at the time when gametocytes, the transmission forms, are present in the peripheral blood. We examined the infectivity of 81 Plasmodium falciparum gametocyte carriers to mosquitoes. Of these, 21 were patients with fever and other malaria-related symptoms, and 60 were recruited among apparently healthy volunteers. Laboratory-reared Anopheles gambiae s.s. (local strain) were experimentally infected with blood from these gametocyte carriers by membrane-feeding. The severity of the clinical symptoms was greater in febrile patients. These symptomatic patients had higher asexual parasitaemia and lower gametocyte densities (P=0·05) than healthy volunteers. Ookinete development occurred in only 6 out of the 21 symptomatic patients, of which only 33·3% successfully yielded oocysts. The oocyst prevalence was only 0·6% in the 546 mosquitoes that were fed on blood from this symptomatic group, with mean oocyst intensity of 0·2 (range 0–2) oocysts per mosquito. In contrast, a higher proportion (76·7%) of healthy gametocyte carriers yielded ookinetes, generating an oocyst rate of 12% in the 1332 mosquitoes that fed on them (mean intensity of 6·3, range: 1–105 oocysts per mosquito). Statistical analysis indicated that the increased infectivity of asymptomatic gametocyte carriers was not simply due to their greater gametocyte abundance, but also to the higher level of infectivity of their gametocytes, possibly due to lower parasite mortality within mosquitoes fed on blood from healthy hosts. These results suggest that blood factors and/or conditions correlated with illness reduce P. falciparum gametocyte infectivity.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BAIRD, J. K., JONES, T. R., PURNOMO, S., MASBAR, S., RATIWAYANTO, S. & LEKSANA, B. (1991). Evidence for specific suppression of gametocytemia by Plasmodium falciparum in residents of hyperendemic Irian Jaya. American Journal of Tropical Medicine and Hygiene 44, 183190.CrossRefGoogle Scholar
BATE, C. A. W. & KWIATKOWSKI, D. (1994). Inhibitory immunoglobulin M antibodies TNF factor-inducing toxins in patients with malaria. Infection and Immunity 62, 30863091.Google Scholar
BEIE, R .J. C. (1998). Malaria development in mosquitoes. Annual Review of Entomology 43, 519543.Google Scholar
BOUDIN, C., OLIVIER, M., MOLEZ, J.-F., CHIRON, J.-P. & AMBROISE-THOMAS, P. A. (1993). High human malarial infectivity to laboratory-bred Anopheles gambiae in a village in Burkino Faso. American Journal of Tropical Medicine and Hygiene 48, 700706.CrossRefGoogle Scholar
BUTCHER, G. A., MITCHELL, G. H. & COHEN, S. (1978). Antibody-mediated mechanisms of immunity to malaria induced by vaccination with Plasmodium knowlesi merozoite. Immunology 34, 7786.Google Scholar
CAO YA-MING, Y.-M., TSUBOI, T. & TORII, M. (1998). Nitric oxide inhibits the development of Plasmodium yoelii gametocytes into gametes. Parasitology International 47, 157166.Google Scholar
CHOTIVANICH, K., UDOMSANGPETCH, R., SIMPSON, J. A., NEWTON, P., PUKRITTAYAKAMEE, S., LOOAREESUWAN, S. & WHITE, N. J. (2000). Parasite multiplication potential and the severity of falciparum malaria. Journal of Infectious Diseases 181, 12061209.CrossRefGoogle Scholar
DRAKELEY, C. J., AKIM, N. I. J., SAUERWEIN, R. W., GREENWOOD, B. M. & TARGETT, G. A. T. (2000). Estimates of the infectious reservoir of Plasmodium falciparum malaria in The Gambia and in Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 472476.CrossRefGoogle Scholar
EYLES, D. E. (1952). Study on Plasmodium gallinaceum. III- Factors associated with malaria infection of the vertebrate host which influence the degree of infection in the mosquito. American Journal of Tropical Medicine and Hygiene 55, 386391.Google Scholar
GAMAGE-MENDIS, A., RAJAKARUNA, J., CARTER, R. & MENDIS, K. N. (1991). Infectious reservoir of Plasmodium vivax and Plasmodium falciparum malaria in an endemic region of Sri Lanka. American Journal of Tropical Medicine and Hygiene 45, 479487.CrossRefGoogle Scholar
GITHEKO, A. K., BRANDLING-BENNETT, A. D., BEIER, M., ATIELI, F., OWAGA, M. & COLLINS, F. H. (1992). The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 355358.CrossRefGoogle Scholar
GOUAGNA, L. C., MULDER, B., NOUBISSI, E. T., VERHAVE, J. P. & BOUDIN, C. (1998). The early sporogonic cycle of Plasmodium falciparum in laboratory infected Anopheles gambiae. Estimation of parasite efficacy. Tropical Medicine and International Health 3, 2128.CrossRefGoogle Scholar
GRAVES, P. M., CARTER, R., BURKOT, T. R., QUAKYI, I. A. & KUMAR, N. (1988). Antibodies to Plasmodium falciparum gamete antigens in Papua New Guinea sera. Parasite Immunology 10, 209218.CrossRefGoogle Scholar
GRAVES, P. M., DOUBROVSKY, A., CARTER, R., EIDA, S. & BECKER, P. (1990). High frequency of antibody response to Plasmodium falciparum gametocyte antigens during acute malaria infection in Papua new Guinea highlanders. American Journal of Tropical Medicine and Hygiene 42, 515520.CrossRefGoogle Scholar
HAJI, H., SMITH, T., CHARLWOOD, J. D. & MEUWISSEN, J. H. (1996). Absence of relationships between selected human factors and natural infectivity of Plasmodium falciparum to mosquitoes in an area of high transmission. Parasitology 113, 425431.CrossRefGoogle Scholar
HAWKING, F., WILSON, M. & GAMMAGE-MENDIS, K. (1971). Evidence for cyclic development and short lived maturity in the gametocytes of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 549559.CrossRefGoogle Scholar
HOGH, B., GAMAGE-MENDIS, A., BUTCHER, G. A., THOMPSON, R., BEGTRUP, K., MENDIS, C., ENOSSE, S. M., DGEDGE, M., BARRETO, J., ELING, W. & SINDEN, R. E. (1998). The differing impact of chloroquine and pyrimethamine/sulfadoxine upon the infectivity of malaria species to the mosquito vector. American Journal of Tropical Medicine and Hygiene 58, 176182.CrossRefGoogle Scholar
JEFFERY, G. & EYLES, D. (1955). Infectivity to mosquito of Plasmodium falciparum as related to gametocyte density and duration of infection. American Journal of Tropical Medicine and Hygiene 4, 761789.Google Scholar
KLEIN, T. A., LIMA, J. B. & TODA, T. A. (1992). Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon basin of Brazil. Memorias Institudo Oswaldo Cruz 87, 393397.CrossRefGoogle Scholar
LENSEN, A., VANDRUTEN, J., BOLMER, M., VANGEMERT, G., ELING, W. & SAUERWEIN, R. W. (1996). Measurement by membrane feeding of reduction in Plasmodium falciparum transmission induced by endemic sera. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 2022.CrossRefGoogle Scholar
MACKINNON, M. J. & READ, A. F. (1999). Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proceedings of the Royal Society of London, B 266, 741748.CrossRefGoogle Scholar
MACKINNON, M. J. & READ, A. F. (2003). Virulence evolution in malaria: an evolutionary perspective. Philosophical Transactions of the Royal Society of London, Series B.
MENDIS, K. N., DAVID, P. H. & CARTER, R. (1990). Human immune responses against sexual stages of malaria parasites: considerations for malaria vaccines. International Journal for Parasitology 20, 497502.CrossRefGoogle Scholar
MENDIS, K. N., MUNESINGUE, Y. D., DESILVA, Y. N. Y., KERAGELLA, I. & CARTER, R. (1987). Malaria transmission-blocking immunity induced by natural infection of Plasmodium vivax in humans. Infection and Immunity 55, 369372.Google Scholar
MINAKAWA, N., MUTERO, C. M., GITHURE, J. I., BEIER, J. C. & YAN, G. (1999). Spatial distribution and habitat characterization of Anopheline mosquito larvae in Western Kenya. American Journal of Tropical Medicine and Hygiene 61, 10101016.CrossRefGoogle Scholar
McKENZIE, F. E., KILLEEN, G. F., BEIER, J. C. & BOSSERT, W. H. (2001). Seasonality, parasite diversity and local host extinctions in Plasmodium falciparum malaria. Ecology 82, 26732681.CrossRefGoogle Scholar
MOTARD, A., BACCAM, D. & LANDAU, I. (1990). Temporary loss of Plasmodium gametocytes infectivity during schizogony. Annales de Parasitologie Humaine et Comparée 65, 218220.CrossRefGoogle Scholar
MOTARD, A., LANDAU, I., NUSSLER, A., GRAU, G., BACCAM, D., MAZIER, D. & TARGETT, G. A. (1993). The role of reactive nitrogen intermediates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunology 15, 2126.CrossRefGoogle Scholar
MUIRHEAD-THOMSON, R. C. (1954). Factors determining the true reservoir of infection of Plasmodium falciparum and Wuchereria bancrofti in a west African village. Transactions of the Royal Society of Tropical Medicine and Hygiene 48, 208224.CrossRefGoogle Scholar
MULDER, B., TCHUINKAM, T., VERHAVE, J. & ROBERT, V. (1994). Malaria transmission blocking activity in the plasma of Plasmodium falciparum gametocyte carriers in Cameroon. Parassitologia 35 (Suppl.), 6567.Google Scholar
NAOTUNNE, T. D., KARUNAWEERA, N., MENDIS, K. & CARTER, R. (1993). Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78, 555562.Google Scholar
NAOTUNNE, T. D., RATHNAYAKE, K. D. L., JAYASINGHE, A., CARTER, R. & MENDIS, K. N. (1990). Plasmodium cynomolgi: serum-mediated blocking and enhancement of infectivity to mosquito during infections in the natural host, macaca sinica. Experimental Parasitology 71, 305313.CrossRefGoogle Scholar
ONG, C. S. L., ZHANG, K. Y., EIDA, S. J., GRAVES, P. M., DOW, C., LOOKER, M., ROGERS, N. C., CHIODINI, P. L. & TARGETT, G. A. T. (1990). The primary antibody response of malaria patients to Plasmodium falciparum sexual stage antigens which are potential transmission blocking vaccine candidates. Parasite Immunology 120, 447456.CrossRefGoogle Scholar
PETRARCA, V., BEIER, J. C., ONYANGO, F., KOROS, J., ASIAGO, C., KOECH, D. K. & ROBERTS, C. R. (1991). Species composition of the Anopheles gambiae complex (diptera: Culicidae) at two sites in western Kenya. Journal of Medical Entomology 28, 307313.CrossRefGoogle Scholar
PONNUDURAI, T., LENSEN, A. H. W., VAN GERMERT, G. T. A., BENSINK, M. P. E., BOLMER, M. & MEUWISSEN, J. H. E.TH. (1989). Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98, 165173.CrossRefGoogle Scholar
READ, D., NARARA, A., KEYMER, A. E. & DAY, K. P. (1992). Gametocyte sex ratio as indirect measures of outcrossing rate in malaria. Parasitology 104, 387395.CrossRefGoogle Scholar
ROBERT, V., AWONO-AMBENE, H. P., LE HESRAN, J. Y. & TRAPE, J. F. (2000). Gametocytemia and infectivity to mosquitoes of patients with uncomplicated Plasmodium falciparum malaria attacks treated with chloroquine or sulfadoxine plus pyrimethamine. American Journal of Tropical Medicine and Hygiene 62, 210216.CrossRefGoogle Scholar
ROBERT, V., READ, A., ESSONG, J., TCHUINKAM, T., MULDER, B., VERHAVE, J. P. & CARNEVALE, P. (1996). Effect of gametocyte sex ratio on infectivity of Plasmodium falciparum to Anopheles gambiae. Transaction of the Royal Society of Tropical Medicine and Hygiene 90, 621624.CrossRefGoogle Scholar
ROEFFEN, W., MULDER, B., TEELEN, K., BOLMER, M., ELING, W., TARGETT, G. A. T., BECKERS, P. J. & SAUERWEIN, R. W. (1996). Association between anti-Pfs48/45 reactivity and Plasmodium falciparum transmission-blocking activity in sera from Cameroon. Parasite Immunology 18, 103109.CrossRefGoogle Scholar
ROGIER, C., CAMMENGES, D. & TRAPE, J. F. (1996). Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. American Journal of Tropical Medicine and Hygiene 54, 613619.CrossRefGoogle Scholar
RUTLEDGE, L. C., GOULD, D. J. & TANTICHAREON, B. (1969). Factors affecting the infection of anophelines with human malaria in Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene 63, 613619.CrossRefGoogle Scholar
SINDEN, R. E. (1983). The cell biology of sexual development in Plasmodium. Parasitology 86, 728.CrossRefGoogle Scholar
SINDEN, R. E. (1991). Asexual blood stage of malaria modulates gametocyte infectivity to mosquito vector–possible implication for control strategies. Parasitology 103, 191196.CrossRefGoogle Scholar
TARGETT, G. A. T., DRAKELEY, C., JAWARA, M., VON SEIDLEIN, L., COLEMAN, R., DEEN, J., PINDER, M., DOHERTY, T., SUTHERLAND, C., WALRAVEN, G. & MILLIGAN, P. (2001). Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. Journal of Infectious Diseases 183, 12541259.CrossRefGoogle Scholar
TCHUINKAM, T., MULDER, B., DECHERING, K., STOFFELS, H., VERHAVE, J. P., COT, M., CARNEVALE, P., MEUWISSEN, J. H. E. T. & ROBERT, V. (1993). Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: Factors influencing the infectivity of mosquitoes. Tropical Medicine and Parasitology 44, 271276.Google Scholar
VAUGHAN, J., NODEN, B. & BEIER, J. (1992). Population dynamics of Plasmodium falciparum sporogony in laboratory infected A. gambiae. Journal of Parasitology 78, 716724.CrossRefGoogle Scholar
WOOLHOUSE, M. E., DYE, C., ETARD, J. F., SMITH, T., CHARLWOOD, J. P., GARNETT, G. P., HAGAN, P., HII, J. L., NDHLOVU, P. D., QUINNELL, R. J., WATTS, C. H., CHANDIWANA, S. K. & ANDERSON, R. M. (1997). Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences, USA 94, 338342.CrossRefGoogle Scholar