Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:48:45.308Z Has data issue: false hasContentIssue false

A quick-frozen, freeze-fracture and deep-etched study of the cuticle of adult forms of Strongyloides venezuelensis (Nematoda)

Published online by Cambridge University Press:  06 April 2009

A. M. B. Martinez
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Institute de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941, Ilha do Fundão, Rio de Janeiro, Brasil Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941, Ilha do Fundão, Rio de Janeiro, Brasil
W. De Souza
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Institute de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941, Ilha do Fundão, Rio de Janeiro, Brasil Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade estadual do Norte Fluminense, Campos dos Goytacazes, 28015-620, Rio de Janeiro, Brazil

Summary

The cuticle of adult forms of Strongyloides venezuelensis was studied by routine transmission electron microscopy, conventional freeze-fracture and also using quick-freeze and deep-etch techniques. In routine thin sections the cuticle of S. venezuelensis comprises 7 layers: epicuticle, outer cortical, inner corticcal, external medial, internal medial, fibrous and basal. Observation of replicas of specimens fractured across the thickness of the body wall, revealed at the epicuticle an ordered array of particles accompanying the cuticular annulations. At the level of the cortical and medial layers we observed few scattered particles embedded in an amorphous matrix without a particular arrangement. The fibrous layer was represented by several parallel lines of ordered particles of similar size. In tangentially fractured specimens, the epicuticle cleaves readily exposing 2 faces, one exhibiting intramembranous particles without any particular arrangement, immersed in a smooth matrix (P face), and the other showing depressions and very few particles (E face). In replicas of fractures submitted to etching, we observed at the level of the cortical, medial fibrous and basal layers an interconnecting fibrous and globous structure which was organized in a different direction at the fibrous layer. The association of freeze-fracture to deep-etch technique revealed the internal structural organization of the cuticle layers showing details that were not seen before using conventional freeze–fracture technique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, A., Souto-Padron, T. & De Souza, W. (1994). An ultrastructural, cytochemical and freeze-fracture study of the surface structures of Brugia malayi microfilariae. International Journal for Parasitology 24, 899907.CrossRefGoogle ScholarPubMed
Benchimol, M., Kachar, B. & Souza, W. De (1993). The structural organization of the pathogenic protozoan Tritrichomonas foetus as seen in replicas of quick frozen, freeze-fractured and deep etched cells. Biology of the Cell 77, 289–95.CrossRefGoogle ScholarPubMed
Betschart, B. & Jenkins, J. M. (1987). Distribution of iodinated proteins in Dipetalonema viteae after surface labelling. Molecular and Biochemical Parasitology 22, 18.CrossRefGoogle ScholarPubMed
Betschart, B. & wyss, K. (1990). Analysis of the cuticular collagens of Ascaris suum. Acta Tropica 47, 297305.CrossRefGoogle ScholarPubMed
Bird, A. F. & Bird, J. (1991). The Structures of Nematodes, 2nd Edn.San Diego: Academic Press.Google Scholar
Blaxter, M. L., Page, A. P., Rudin, W. & Maizels, R. M. (1992). Nematode surface coats: actively evading immunity. Parasitology Today 8, 243–7.CrossRefGoogle ScholarPubMed
Cox, G. N. (1992). Molecular and biochemical aspects of nematode collagens. Journal of Parasitology 78, 115.CrossRefGoogle ScholarPubMed
Cox, G. N., Kusch, M. & Edgar, R. S. (1981). Cuticle of Caenorhabditis elegans: its isolation and partial characterization. Journal of Cell Biology 90, 717.CrossRefGoogle ScholarPubMed
Cox, G. N., Shamansky, L. M. & Boisvenue, R. J. (1990). Haemonchus contortus: evidence that the 3A3 collagen gene is a member of an evolutionarily conserved family of nematode cuticle collagens. Experimental Parasitology 70, 175–85.CrossRefGoogle ScholarPubMed
De Souza, W., Souto-Padron, T., Dreyer, G. & Andrade, L. D. (1993). Wuchereria bancrofti: Freeze-fracture study of the epicuticle of microfilariae. Experimental Parasitology 76, 287–90.CrossRefGoogle ScholarPubMed
Har-El, R. & Tanzer, M. L. (1993). Extracellular matrix 3: Evolution of the extracellular matrix in invertebrates. FASEB Journal 7, 115–23.CrossRefGoogle ScholarPubMed
Heuser, J. E. (1986). Different structural states of a microtubule cross-linking molecule, captured by quick-freezing motile axostyle of protozoa. Journal of Cell Biology 103, 2209–27.CrossRefGoogle ScholarPubMed
Hirokawa, N., Tilney, L. G., Fujiwara, K. & Heuser, J. E. (1982). Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. Journal of Cell Biology 94, 425–43.CrossRefGoogle ScholarPubMed
Kennedy, M. W. (1991). Parasite Nematodes – Antigens, Membranes and Genes. London. Taylor and Francis.Google Scholar
Lee, D. L., Wright, K. A. & Shivers, R. R. (1984). A freeze-fracture study of the surface of the infective-stage larvae of the nematode Trichinella. Tissue and Cell 16, 819–28.CrossRefGoogle ScholarPubMed
Lee, D. L., Wright, K. A. & Shivers, R. R. (1986). A freeze-fracture study of the wall of adult, in utero larvae and infective-stage larvae of Trichinella (Nematoda). Tissue and Cell 18, 219–30.CrossRefGoogle Scholar
Lee, D. L., Wright, K. A. & Shivers, R. R. (1993). A freeze-fracture study of the cuticle of adult Nippostrongylus brasiliensis (Nematoda). Parasitology 107, 545–52.CrossRefGoogle ScholarPubMed
Lumsden, R. R. (1975). Surface ultrastructure and cytochemistry of parasitic helminths. Experimental Parasitology 37, 267339.CrossRefGoogle ScholarPubMed
Maizels, R. M., Blaxter, M. L., Selkirk, M. E. (1993). Forms and functions of nematode surfaces. Experimental Parasitology 5, 112.Google Scholar
Martinez-Palomo, A. (1978). Ultrastructural characterization of the cuticle of Onchocerca volvulus microfilaria. Journal of Parasitology 64, 127–36.CrossRefGoogle ScholarPubMed
Page, A. P., Rudin, W., Fluri, E., Blaxter, M. L. & Maizels, R. M. (1992). Toxocara canis: a labile antigenic coat overlying the epicuticle of infective larvae. Experimental Parasitology 75, 7286.CrossRefGoogle ScholarPubMed
Peixoto, C. A. & De souza, W. (1994). Freeze-fracture characterization of the cuticle of adult and dauer forms of Caenorhabditis elegans. Parasitology Research 80, 53–7.CrossRefGoogle ScholarPubMed
Peixoto, C. A., Martinez, A. M. B., Souza, M. F. De & De Souza, W. (1994). Caenorhabditis elegans and Strongyloides venezuelensis: ultrastructural visualization of lipids in the cuticles of adult and larvae forms (Nematoda: Rhabditoidea). Acta Microscopica 3, 107–15.Google Scholar
Proudfoot, L., Kusel, J. R., Smith, H. U. & Kennedy, M. W. (1991). Biophysical properties of the nematode surface. In Parasitic Nematodes–Antigens, Membranes and Genes (ed. Kennedy, M. W.), pp. 126, London: Taylor and Francis.Google Scholar
Rugai, E., Mattos, T. & Brizola, A. P. (1954). Nova técnica para isolar larvas de nematóides das fezes; modificações do méthodo de Baermann. Revista do Instituto Adolfo Lutz 14, 58.CrossRefGoogle Scholar
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720–3.CrossRefGoogle ScholarPubMed
Sjöstrand, F. S. (1979). The interpretation of freeze- fractured biological material. Journal of Ultrastructure Research 39, 378420.CrossRefGoogle Scholar
Wright, K. A. (1987). The nematode's cuticle – its surface and the epidermis: function, homology, analogy – a current consensus. Journal of Parasitology 73, 1077–83.CrossRefGoogle ScholarPubMed