Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:20:47.330Z Has data issue: false hasContentIssue false

Reappraising the theme of breeding systems in Echinococcus: is outcrossing a rare phenomenon?

Published online by Cambridge University Press:  30 September 2010

K. L. HAAG*
Affiliation:
Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul. Caixa Postal 15053, CEP 91501-970, Porto Alegre, Brazil Departamento de Genética, Universidade Federal do Rio Grande do Sul. Caixa Postal 15053, CEP 91501-970, Porto Alegre, Brazil University of Basel, Zoological Institute, Vesalgasse 1, 4051 Basel, Switzerland
P. B. MARIN
Affiliation:
Departamento de Genética, Universidade Federal do Rio Grande do Sul. Caixa Postal 15053, CEP 91501-970, Porto Alegre, Brazil
D. A. S. GRAICHEN
Affiliation:
Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul. Caixa Postal 15053, CEP 91501-970, Porto Alegre, Brazil
M. L. DE LA RUE
Affiliation:
Departamento de Microbiologia e Parasitologia/CCS, Universidade Federal de Santa Maria. Av. Roraima, 1000, CEP 97105-900, Santa Maria, Brazil
*
*Corresponding author: University of Basel, Zoological Institute, Vesalgasse 1, 4051 Basel, Switzerland. Tel: +41 (0) 61 267 03 61. Fax: +41 (0) 61 267 03 62. E-mail: karen.haag@unibas.ch

Summary

Selfing has been considered the most common mode of reproduction in Echinococcus flatworms. However, population genetic studies on the asexual larval stage involving nuclear co-dominant markers have not always revealed significant heterozygote deficiencies – the expected outcome of a regularly and highly inbred population. In this study, we analysed the genetic structure of Echinococcus granulosus sensu lato populations from Southern Brazil during their adult (sexual) stage using 1 mitochondrial and 1 nuclear marker (cox 1 and mdh, respectively). We show that parasite genetic differentiation is largest among definitive hosts (domestic dogs) from different farms, suggesting that transmission is mostly maintained within a farm. Moreover, we show that heterozygote deficiencies are not significant, and we suggest that outbreeding is the most common mode of reproduction of the parasite in that region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badaraco, J. L., Ayala, F. J., Bart, J.-M., Gottstein, B. and Haag, K. L. (2008). Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations. Experimental Parasitology 119, 453459.CrossRefGoogle ScholarPubMed
Bart, J. M., Knapp, J., Gottstein, B., El-Garch, F., Giraudoux, P., Glowatzki, M. L., Berthoud, H., Maillard, S. and Piarroux, R. (2006). EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of Echinococcus multilocularis. Infection Genetics and Evolution 6, 390400.CrossRefGoogle ScholarPubMed
Bowles, J., Blair, D. and McManus, D. P. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165174.CrossRefGoogle ScholarPubMed
Cheptou, P.-O. and Dieckmann, U. (2002). The evolution of self-fertilization in density-regulated populations. Proceedings of the Royal Society of London, B 269, 11771186.CrossRefGoogle ScholarPubMed
Christen, M., Kurtz, J. and Milinski, M. (2002). Outcrossing increases infection success and competitive ability: experimental evidence from a hermaphrodite parasite. Evolution 56, 22432251.Google ScholarPubMed
Excoffier, L. and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Farias, L. N., Malgor, R., Cassaravilla, C., Bragança, C. and De La Rue, M. (2004). Echinococcosis in Southern Brazil: efforts toward implementation of a control program in Santana do Livramento, Rio Grande do Sul. Revista do Instituto de Medicina Tropical de São Paulo 46, 153156.CrossRefGoogle Scholar
Haag, K. L., Araújo, A. M., Gottstein, B., Siles-Lucas, M., Thompson, R. C. A. and Zaha, A. (1999). Breeding systems in Echinococcus granulosus (Cestoda; Taeniidae): selfing or outcrossing? Parasitology 118, 6371.CrossRefGoogle ScholarPubMed
Jenkins, D. J. (2005). Hydatid control in Australia: where it began, what we have achieved and where to from here. International Journal for Parasitology 35, 733740.CrossRefGoogle Scholar
Knapp, J., Bart, J. M., Glowatzki, M. L., Ito, A., Gerard, S., Maillard, S., Piarroux, R. and Gottstein, B. (2007). Assessment of use of microsatellite polymorphism analysis for improving spatial distribution tracking of Echinococcus multilocularis. Journal of Clinical Microbiology 45, 29432950.CrossRefGoogle ScholarPubMed
Lawson, R. and Gemmel, M. A. (1983). Hydatidosis and cysticercosis: The dynamics of transmission. Advances in Parasitology 22, 331369.Google ScholarPubMed
Loewe, L. and Cutter, A. D. (2008). On the potential for extinction by Muller's Ratchet in Caenorhabditis elegans. BMC Evolutionary Biology 8, 125.CrossRefGoogle ScholarPubMed
Lüscher, A. and Milinski, M. (2003). Simultaneous hermaphrodites reproducing in pairs self-fertilize some of their eggs: an experimental test of predictions of mixed-mating and Hermaphrodite's Dilemma theory. Journal of Evolutionary Biology 16, 10301037.CrossRefGoogle ScholarPubMed
Lymbery, A. J., Constantine, C. C. and Thompson, R. C. A. (1997). Self-fertilization without genomic or population structuring in a parasitic tapeworm. Evolution 51, 289294.CrossRefGoogle ScholarPubMed
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge University Press, Cambridge, UK.Google Scholar
McCauley, D. E., Whittier, D. P. and Reilly, L. M. (1985). Inbreeding and the rate of self-fertilization in a grape fern, Botrychium dissectum. American Journal of Botany 72, 19781981.Google Scholar
Nakao, M., McManus, D. P., Schantz, P. M., Craig, P. S. and Ito, A. (2007). A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134, 713722.CrossRefGoogle ScholarPubMed
Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York, USA.CrossRefGoogle Scholar
Oku, Y., Malgor, R., Benavidez, U., Carmona, C. and Kamiya, H. (2004). Control program against hydatidosis and the decreased prevalence in Uruguay. International Congress Series 1267, 98104.CrossRefGoogle Scholar
Rausch, R. L. (1986). Life-cycle patterns and distribution of Echinococcus species. In The Biology of Echinococcus and Hydatid Disease (ed. Thompson, R. C. A.), pp. 4480. George Allen & Unwin, London, UK.Google Scholar
Schantz, P. M. (1973). Guía para el empleo del bromhidrato de arecolina en el diagnóstico de la infección por Echinococcus granulosus en el perro. Boletín Chileno de Parasitología 28, 8190.Google Scholar
Smyth, J. D. and Smyth, M. M. (1964). Natural and experimental hosts of Echinococcus granulosus and E. multilocularis, with comments on the genetics of speciation in the genus Echinococcus. Parasitology 54, 493514.CrossRefGoogle Scholar
Smyth, J. D. and Smyth, M. M. (1969). Self insemination of Echinococcus granulosus in vivo. Journal of Helminthology 43, 383388.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. and Lymbery, A. J. (1988). The nature, extent and significance of variation within the genus Echinococcus. Advances in Parasitology 27, 209249.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. and McManus, D. P. (2002). Towards a taxonomic revision of the genus Echinococcus. Trends in Parasitology 18, 452457.CrossRefGoogle ScholarPubMed
Uyenoyama, M. K. (1986). Inbreeding and the cost of meiosis: the evolution of selfing in populations practicing biparental inbreeding. Evolution 40, 388404.CrossRefGoogle ScholarPubMed
Wang, H. (1998). A study on morphology of reproductive organs of Echinococcus granulosus by light microscopy, transmission and scanning electron. Endemic Diseases Bulletin 3, 3133.Google Scholar
Wright, S. (1977). Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago, IL, USA.Google Scholar
Supplementary material: File

Haag supplementary material

Table.xls

Download Haag supplementary material(File)
File 43 KB