Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T11:21:59.025Z Has data issue: false hasContentIssue false

Repetitive DNA and hybridization patterns demonstrate extensive variability between the sibling species Globodera rostochiensis and G. pallida

Published online by Cambridge University Press:  06 April 2009

A. J. De Jong
Affiliation:
Department of Nematology, Agricultural University, Binnenhaven 10, 6709 PD Wageningen, The Netherlands
J. Bakker
Affiliation:
Department of Nematology, Agricultural University, Binnenhaven 10, 6709 PD Wageningen, The Netherlands
M. Roos
Affiliation:
Division of Parasitology, University of Utrecht, Yalelaan 1, P.O. Box 80.171, 3508 TD Utrecht, The Netherlands
F. J. Gommers
Affiliation:
Department of Nematology, Agricultural University, Binnenhaven 10, 6709 PD Wageningen, The Netherlands

Summary

A method is described for the isolation of high molecular weight DNA from females of potato cyst nematodes. Restriction enzyme analyses of repetitive DNA revealed 30 bands specific for Globodera rostochiensis and 8 bands specific for G. pallida. None of the repetitive DNA bands resolved was common to both species. Hybridization patterns, obtained with a DrosophilaβJ-tubulin probe, revealed 4 common bands, 3 bands specific for G. rostochiensis and 12 bands specific for G. pallida.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakker, J., (1987). Protein variation in cyst nematodes. Ph.D. thesis. Agricultural University Wageningen, The Netherlands.Google Scholar
Bakker, J., & Bouwman-Smits, L., (1988). Contrasting rates of protein and morphological evolution in cyst nematode species. Phytopathology 78, 900–4.Google Scholar
Bolla, R. T., Weaver, C., & Winter, E. K., (1988). Genomic differences among pathotypes of Bursaphelenchus xylophilus. Journal of Nematology 20, 309–16.Google ScholarPubMed
Burrows, P. R., & Boffey, S. A., (1986). A technique for the extraction and restriction endonuclease digestion of total DNA from Globodera rostochiensis and Globodera pollida second stage juveniles. Revue de Nematologie 9, 199200.Google Scholar
Butler, M. H., Wass, S. M., Leyhrsen, K. R., Fox, G. E., & Hecht, R. M., (1981). Molecular relationships between closely related strains and species of nematodes. Journal of Molecular Evolution 18, 1823.Google Scholar
Cameron, M. L., Levy, D., Nutman, T., Vanamala, C. R., Narayanan, P. R., & Rajan, T. V., (1988). Use of restriction fragment length polymorphisms (RFLPs) to distinguish between nematodes of pathogenic significance. Parasitology 96, 381–90.CrossRefGoogle ScholarPubMed
Cleveland, D. W., Lopata, M. A., Mcdonald, R. J., Cowan, N. J., Rutter, W. J., & Kirschner, M. W., (1980). Number and evolutionary conservation of α- and β- tubulin and cytoplasmic β- and τ-actin genes using specific cloned cDNA probes. Cell 20, 95105.CrossRefGoogle Scholar
Curran, J., Baillie, D. L., & Webster, J. M., (1985). Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology 90, 137–44.CrossRefGoogle Scholar
Curran, J., Mcclure, M. A., & Webster, J. M., (1986). Genotypic differentiation of Meloidogyne populations by detection of restriction fragment length difference in total DNA. Journal of Nematology 18, 83–6.Google Scholar
Dowsett, A. P., & Young, M. W., (1982). Differing levels of dispersed repetitive DNA among closely related species of Drosphila. Proceedings of the National Academy of Science, USA 79, 4570–4.CrossRefGoogle Scholar
Emmons, S. W., Klass, M. R., & Hirsch, D., (1979). Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Science, USA 76, 1333–7.Google Scholar
Feinberg, A. P., & Vogelstein, B., (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.Google Scholar
Fox, P. C., & Atkinson, H. J., (1984). Isoelectric focusing of general protein and specific enzymes from pathotypes of Globodera rostochiensis and G. Pallida. Parasitology 88, 131–9.CrossRefGoogle Scholar
Fox, P. C., & Atkinson, H. J., (1986). Recent developments in the biochemical taxonomy of plant parasitic nematodes. In Agricultural Zoology Reviews, vol. 1 (ed. Russel, G. E.), pp. 301–31. Newcastle upon Tyne: Intercept Ponteland.Google Scholar
Greet, D. N., & Firth, J., (1977). Influence of host plant on electrophoretic protein patterns of some round-cyst nematode females and use of larvae to obtain less ambiguous results. Nematologica 23, 411–15.Google Scholar
Jones, F. G. W., Carpenter, J. M., Parrott, D. M., Stone, A. R., & Trudgill, D. L., (1970). Potato Cyst Nematode: one species or two? Nature, London 227, 83–4.Google Scholar
Kort, J., Ross, H., Rumpenhorst, H. J., & Stone, A. R., (1978). An international scheme for identifying and classifying pathotypes of potato cyst nematodes Globodera rostochiensis and G. Pallida. Nematologica 23, 333–9.CrossRefGoogle Scholar
Landfear, S. M., Mcmahon-Pratt, D., & Wirth, D. F., (1983). Tandem arrangement of tubulin genes in the protozoan parasite Leishmania enriettii. Molecular and Cellular Biology 3, 1070–6.Google ScholarPubMed
Majiwa, P. A. O., & Webster, P., (1987). A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology 95, 137–4.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F., & Sambrook, J., (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory.Google Scholar
Mclain, D. K., Rai, K. S., & Fraser, M. J., (1987). Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58, 373–81.CrossRefGoogle ScholarPubMed
Mcreynolds, L. A., Desimone, S. M., & Williams, S. A., (1986). Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Science, USA 53, 797801.Google Scholar
Murray, M. G., & Thompson, W. F., (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 4321–5.Google Scholar
Natvig, D. O., & Jackson, D. A., (1987). Random-fragment hybridization analysis of evolution in the genus Neurospora: the status of four-spored strains. Evolution 41, 1003–21.Google Scholar
Nei, M., & Li, W. H., (1979). Mathematical Model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science, USA 76, 5269–73.Google Scholar
Radice, A. D., Powers, T. O., Sandall, L. J., & Riggs, R. D., (1988). Comparisons of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtii. Journal of Nematology 20, 443–50.Google Scholar
Schots, A., Bakker, J., Gommers, F. J., Bouwman-Smits, L., & Egberts, E., (1987). Serological differentiation of the potato-cyst nematodes Globodera pallida and G. rostochiensis partial purification of species-specific proteins. Parasitology 95, 421–8.CrossRefGoogle Scholar
Snyder, J. A., & Mcintosh, J. R., (1976). Biochemistry And Physiology Of Microtubules. Annual Review Of Biochemistry 45, 699720.CrossRefGoogle ScholarPubMed
Southern, E. M., (1975). Detection Of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Stone, A. R., (1973). Heterodera pallida n.sp. (Nematoda: Heteroderidae) a second species of potato cyst nematode. Nematologica 18 (1972), 591606.CrossRefGoogle Scholar
Tomashaw, L. S., Milhauwen, M., Rutter, W. J., & Agabian, N., (1983). Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei. Cell 32, 3542.CrossRefGoogle Scholar
Trudgill, D. L., & Carpenter, J. M., (1971). Disk electrophoresis of proteins of Heterodera species and pathotypes of Heterodera rostochiensis. Annals of Applied Biology 69, 35–1.Google Scholar