Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T05:40:38.593Z Has data issue: false hasContentIssue false

Resistance as a tool for discovering and understanding targets in parasite neuromusculature

Published online by Cambridge University Press:  29 March 2006

N. C. SANGSTER
Affiliation:
Faculty of Veterinary Science, University of Sydney, 2006, Australia
J. SONG
Affiliation:
Faculty of Veterinary Science, University of Sydney, 2006, Australia
J. DEMELER
Affiliation:
Faculty of Veterinary Science, University of Sydney, 2006, Australia

Abstract

The problem of anthelmintic resistance prevents efficient control of parasites of livestock and may soon compromise human parasite control. Research into the mechanisms of resistance and the quest for diagnostic tools to aid control has required research that focuses on field resistance. On the other hand, resistant worms, including those kept in the laboratory, provide useful tools for studying drug action, especially at neuromuscular targets in worms. While the needs and directions of these research aims overlap, this review concentrates on research on drug targets. In this context, resistance is a useful tool for site of action confirmation. For example, correlations between molecular expression studies and resistance assays conducted on whole worms can strengthen claims for sites of anthelmintic action. Model systems such as Caenorhabditis elegans have been very useful in understanding targets but give a limited picture as it is now clear that resistance mechanisms in this worm are different from those in parasites. Accordingly, research on parasites themselves must also be performed. Resistant isolates of the sheep nematode parasite Haemonchus contortus are the most widely used for this purpose as in vivo, in vitro, physiological and molecular studies can be performed with this species. Neuromuscular target sites for the anthelmintics levamisole and ivermectin are the best studied and have benefited most from the use of resistant worm isolates. Resistance to praziquantel and the newer chemical groups should provide new tools to explore targets in the future.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BACON, J. A., ULRICH, R. G., DAVIS, J. P., THOMAS, E. M., JOHNSON, S. S., CONDER, G. A., SANGSTER, N. C., ROTHWELL, J. T., McCRACKEN, R. O., LEE, B. H., CLOTHIER, M. F., GEARY, T. G. & THOMPSON, D. P. ( 1998). Comparative in vitro effects of closantel and selected β-ketomide anthelmintics on a gastrointestinal nematode and vertebrate liver cells. Journal of Veterinary Pharmacology and Therapeutics 21, 190198.CrossRefGoogle Scholar
BLACKHALL, W. J., POULIOT, J.-F., PRICHARD, R. K. & BEECH, R. N. ( 1998). Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Experimental Parasitology 90, 4248.CrossRefGoogle Scholar
BRENNER, S. ( 1974). The genetics of Caenorhabditis elegans. Genetics 77, 7194.Google Scholar
CIOLI, D., BOTROS, S., WHEATCROFT-FRANCKLOW, K., MBAYE, A., SOUTHGATE, V., TCHUENTE, L.-A. T., PICA-MATTOCCIA, L., TROIANI, A. R., EL-din, S. H. S., SABRA, A.-N. A., ALBIN, J., ENGELS, D. & DOENHOFF, M. J. ( 2004). Determination of ED50 values for praziquantel in praziquantel-resistant and -susceptible Schistosoma mansoni isolates. International Journal for Parasitology 34, 979987.CrossRefGoogle Scholar
CONDER, G. A., JOHNSON, S. S., GUIMOND, P. M., GEARY, T. G., LEE, B. L., WINTERROWD, C. A., LEE, B. H. & DIROMA, P. J. ( 1991). Utility of a Haemonchus contortus/jird (Meriones unguiculatus) model for studying resistance to levamisole. Journal of Parasitology 77, 8386.CrossRefGoogle Scholar
CONDER, G. A., THOMPSON, D. P. & JOHNSON, S. S. ( 1993). Demonstration of co-resistance of Haemonchus contortus to ivermectin and moxidectin. Veterinary Record 132, 651652.CrossRefGoogle Scholar
COYNE, C. P. & BRAKE, D. ( 2001). Characterisation of Haemonchus contortus-derived cell populations propagated in vitro in a tissue culture environment and their potential to induce protective immunity in sheep. International Journal for Parasitology 31, 359376.CrossRefGoogle Scholar
DENT, J. A., DAVIS, M. W. & AVERY, L. ( 1997). avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO Journal 16, 58675879.CrossRefGoogle Scholar
DENT, J. A., SMITH, M. M., VASSILATIS, D. K. & AVERY, L. ( 2000). The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 97, 26742679.CrossRefGoogle Scholar
FLEMING, J. T., SQUIRE, M. D., BARNES, T. M., TORNOE, C., MATSUDA, K., AHNN, J., FIRE, A., SULSTON, J. E., BARNARD, E. A., SATTELLE, D. B. & LEWIS, J. A. ( 1997). Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. Journal of Neuroscience 17, 58435857.Google Scholar
FLEMING, J. T., TORNOE, C., RIINA, H. A., COADWELL, J., LEWIS, J. A. & SATTELLE, D. B. ( 1993). Acetylcholine receptor molecules of the nematode Caenorhabditis elegans. Comparative Molecular Neurobiology 63, 6580.CrossRefGoogle Scholar
FORRESTER, S. G., PRICHARD, R., DENT, J. A. & BEECH, R. ( 2003). Haemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin. Molecular and Biochemical Parasitology 129, 115121.CrossRefGoogle Scholar
FREEMAN, A. S., NGHIEM, C., LI, J., ASHTON, F. T., GUERRERO, J., SHOOP, W. L. & SCHAD, G. A. ( 2003). Amphidial structure of ivermectin-resistant and susceptible laboratory and field strains of Haemonchus contortus. Veterinary Parasitology 110, 217226.CrossRefGoogle Scholar
GEARY, T. G., SIMS, S. M., THOMAS, E. M., VANOVER, L., DAVIS, J. P., WINTERROWD, C. A., KLEIN, R. D., HO, N. F. H. & THOMPSON, D. P. ( 1993). Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Experimental Parasitology 77, 8896.CrossRefGoogle Scholar
GILL, J. H., KERR, C. A., SHOOP, W. L. & LACEY, E. ( 1998). Evidence of multiple mechanisms of avermectin resistance in Haemonchus contortus – comparison of selection protocols. International Journal for Parasitology 28, 783789.CrossRefGoogle Scholar
GILL, J. H. & LACEY, E. ( 1998). Avermectin/milbemycin resistance in trichostrongyloid nematodes. International Journal for Parasitology 28, 863877.CrossRefGoogle Scholar
GILL, J. H., REDWIN, J. M., VAN WYK, J. A. & LACEY, E. ( 1995). Avermectin inhibition of larval development in Haemonchus contortus – effects of ivermectin resistance. International Journal for Parasitology 25, 463470.CrossRefGoogle Scholar
GRANT, W. N. ( 1992). Transformation of Caenorhabditis elegans with genes from parasitic nematodes. Parasitology Today 8, 344346.CrossRefGoogle Scholar
GREENBERG, R. M. ( 2005). Are Ca2+ channels targets of praziquantel action? International Journal for Parasitology 35, 19.Google Scholar
HEJMADI, M. V., JAGANNATHAN, S., DELANY, N. S., COLES, G. C. & WOLSTENHOLME, A. J. ( 2000). L-Glutamate binding sites for parasitic nematodes: an association with ivermectin resistance? Parasitology 120, 535545.Google Scholar
HOEKSTRA, R., VISSER, A., WILEY, L. J., WEISS, A. S., SANGSTER, N. C. & ROOS, M. H. ( 1997). Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Molecular and Biochemical Parasitology 84, 179187.CrossRefGoogle Scholar
ISSA, Z., GRANT, W., STASIUK, S. & SHOEMAKER, C. ( 2005). Development of methods for RNA inhibition in the sheep gastrointestinal parasite Trichostrongylus colubriformis. International Journal for Parasitology 35, 935940.CrossRefGoogle Scholar
JAGANNATHAN, S., LAUGHTON, D. L., CRITTEN, C. L., SKINNER, T. M., HOROSZOK, L. & WOLSTENHOLME, A. J. ( 1999). Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. Molecular and Biochemical Parasitology 103, 129140.CrossRefGoogle Scholar
KAMATH, R. S., FRASER, A. G., DONG, Y., POULIN, G., DURBIN, R., GOTTA, M., KANAPIN, A., LE BOT, N., MORENO, S., SOHRMANN, M., WELCHMAN, D. P., ZIPPERLEN, P. & AHRINGER, J. ( 2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231237.CrossRefGoogle Scholar
KOTZE, A. C. ( 1998). Effects of macrocyclic lactones on ingestion in susceptible and resistant Haemonchus contortus larvae. Journal of Parasitology 84, 631635.CrossRefGoogle Scholar
KOTZE, A. C., DOBSON, R. J., TYRRELL, K. L. & STEIN, P. A. ( 2002). High-level ivermectin resistance in a field isolate of Haemonchus contortus associated with a low level of resistance in the larval stage: implications for resistance detection. Veterinary Parasitology 108, 255263.CrossRefGoogle Scholar
KWA, M. S. G., VEENSTRA, J. G. H., VAN DIJK, M. & ROOS, M. H. ( 1995). β-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. Journal of Molecular Biology 246, 500510.CrossRefGoogle Scholar
LE JAMBRE, L. F., DOBSON, R. J., LENANE, I. J. & BARNES, E. H. ( 1999). Selection for anthelmintic resistance by macrocyclic lactones in Haemonchus contortus. International Journal for Parasitology 29, 11011111.CrossRefGoogle Scholar
LE jambre, L., GILL, J. H., LENANE, I. J. & BAKER, P. ( 2000). Inheritance of avermectin resistance in Haemonchus contortus. International Journal for Parasitology 30, 105111.CrossRefGoogle Scholar
LE jambre, L., LENANE, I. J. & WARDROP, A. J. ( 1999). A hybridisation technique to identify anthelmintic resistance genes in Haemonchus. International Journal for Parasitology 29, 19791985.Google Scholar
LEWIS, J. A., WU, C.-H., LEVINE, J. H. & BERG, H. ( 1980). Levamisole-resistant mutants of the nematode Caenorhabditis appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967989.CrossRefGoogle Scholar
LOK, J. B. & MASSEY, H. C. ( 2002). Transgene expression in Strongyloides stercoralis following gonadal microinjection of DNA constructs. Molecular and Biochemical Parasitology 119, 279284.CrossRefGoogle Scholar
MARKS, N. J., SANGSTER, N. C., MAULE, A. G., HALTON, D. W., THOMPSON, D. P., GEARY, T. G. & SHAW, C. ( 1999). Structural characterisation and pharmacology of KHEYLRamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Molecular and Biochemical Parasitology 100, 185194.CrossRefGoogle Scholar
MARTIN, R. J., BAI, G. X., CLARK, C. L. & ROBERTSON, A. P. ( 2003). Methyridine (2-[2-methoxyethyl]-pyridine] and levamisole activate different ACh receptor subtypes in nematode parasites: a new lead for levamisole-resistance. British Journal of Pharmacology 140, 10681076.CrossRefGoogle Scholar
MARTIN, R. J., HARDER, A., LONDERSHAUSEN, M. & JESCHKE, P. ( 1996). Anthelmintic actions of the cyclic depsipeptide PF1022A and its electrophysiological effects on muscle cells of Ascaris suum. Pesticide Science 48, 343349.3.0.CO;2-X>CrossRefGoogle Scholar
MARTIN, R. J., MURRAY, I., ROBERTSON, A. P., BJORN, H. & SANGSTER, N. ( 1998). Anthelmintics and ion-channels: after a puncture, use a patch. International Journal for Parasitology 28, 849862.CrossRefGoogle Scholar
MARTIN, R. J., ROBERTSON, A. P., BJORN, H. & SANGSTER, N. C. ( 1997). Heterogeneous levamisole receptors: a single-channel study of nicotinic acetylcholine receptors from Oesophagostomum dentatum. European Journal of Pharmacology 322, 249257.CrossRefGoogle Scholar
NJUE, A. I., HAYASHI, J., KINNE, L., FENG, X.-P. & PRICHARD, R. ( 2004). Mutations in the extracellular domains of glutamate-gated chloride channel α3 and β subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. Journal of Neurochemistry 89, 11371147.CrossRefGoogle Scholar
OTSEN, M., HAEKSTRA, R., PLAS, M. E., BUNTJER, J. B., LENSTRA, J. A. & ROOS, M. H. ( 2001). Amplified fragment length polymorphism analysis of genetic diversity of Haemonchus contortus during selection for drug resistance. International Journal for Parasitology 31, 11381143.CrossRefGoogle Scholar
PAIEMENT, J.-P., LEGER, C., RIBEIRO, P. & PRICHARD, R. K. ( 1999). Haemonchus contortus: effects of glutamate, ivermectin, and moxidectin on inulin uptake activity in unselected and ivermectin-selected adults. Experimental Parasitology 92, 193198.CrossRefGoogle Scholar
PORTILLO, V., JAGANNATHAN, S. & WOLSTENHOLME, A. J. ( 2003). Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. Journal of Comparative Neurology 462, 213222.CrossRefGoogle Scholar
PRICHARD, R. K. ( 2001). Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17, 445453.CrossRefGoogle Scholar
PRICHARD, R. K., HALL, C. A., KELLY, J. D., MARTIN, I. C. A. & DONALD, A. D. ( 1980). The problem of anthelmintic resistance in nematodes. Australian Veterinary Journal 56, 239251.CrossRefGoogle Scholar
RAYES, D., DE ROSA, M. J., BARTOS, M. & BOUZAT, C. ( 2004). Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole. Journal of Biological Chemistry 279, 3639236381.CrossRefGoogle Scholar
REDMOND, D. L., CLUCAS, C., JOHNSTONE, I. L. & KNOX, D. P. ( 2001). Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. Molecular and Biochemical Parasitology 112, 125131.CrossRefGoogle Scholar
RICHMOND, J. E. & JORGENSEN, E. M. ( 1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neuroscience 2, 791797.Google Scholar
ROBERTSON, A. P., BJORN, H. E. & MARTIN, R. J. ( 1999). Resistance to levamisole resolved at the single-channel level. FASEB Journal 13, 749760.CrossRefGoogle Scholar
ROBERTSON, A. P., CLARK, C. L., BURNS, T. A., THOMPSON, D. P., GEARY, T. G., TRAILOVIC, S. M. & MARTIN, R. J. ( 2002). Paraherquamide and 2-deoxy-parherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. Journal of Pharmacology and Experimental Therapeutics 302, 853860.CrossRefGoogle Scholar
ROHRER, S. P., BIRZIN, E. T., EARY, C. H., SCHAEFFER, J. M. & SHOOP, W. L. ( 1994). Ivermectin binding sites in sensitive and resistant Haemonchus contortus. Journal of Parasitology 80, 493497.CrossRefGoogle Scholar
ROTHWELL, J. T. & SANGSTER, N. C. ( 1993). An in vitro assay utilising parasitic larval Haemonchus contortus to detect resistance to closantel and other anthelmintics. International Journal for Parasitology 23, 573578.CrossRefGoogle Scholar
SAMSON-himmelstjerna von, G., HARDER, A., SANGSTER, N. C. & COLES, G. C. ( 2005). Efficacy of two cyclooctadepsipeptides, PF1002A and emodepside, against anthelmitnic-resistant nematodes in sheep and cattle. Parasitology 130, 343347.CrossRefGoogle Scholar
SANGSTER, N. C. ( 1996). Pharmacology of anthelmintic resistance. Parasitology 113, S201S216.CrossRefGoogle Scholar
SANGSTER, N. C. ( 1999). Anthelmintic resistance: past, present and future. International Journal for Parasitology 29, 115124.CrossRefGoogle Scholar
SANGSTER, N. C., DAVIS, C. W. & COLLINS, G. H. ( 1991). Effects of cholinergic drugs on longitudinal contraction in levamisole-susceptible and -resistant Haemonchus contortus. International Journal for Parasitology 21, 689695.CrossRefGoogle Scholar
SANGSTER, N. C. & DOBSON, R. J. ( 2002). Anthelmintic Resistance, In The Biology of Nematodes (ed. Lee, D.L.), pp. 531567. Taylor & Francis, London.
SANGSTER, N. C. & GILL, J. ( 1999). Pharmacology of anthelmintic resistance. Parasitology Today 15, 141146.CrossRefGoogle Scholar
SANGSTER, N. C., PRICHARD, R. K. & LACEY, E. ( 1985). Tubulin and benzimidazole-resistance in Trichostrongylus colubriformis (Nematoda). Journal of Parasitology 71, 645651.CrossRefGoogle Scholar
SANGSTER, N. C., RILEY, F. L. & COLLINS, G. H. ( 1988). Investigation of the mechanism of levamisole resistance in trichostrongylid nematodes of sheep. International Journal for Parasitology 18, 813818.CrossRefGoogle Scholar
SANGSTER, N. C., RILEY, F. L. & WILEY, L. J. ( 1998). Binding of [3H]m-aminolevamisole to receptors in levamisole-susceptible and -resistant Haemonchus contortus. International Journal for Parasitology 28, 707717.CrossRefGoogle Scholar
SHERIFF, J. C., KOTZE, A. C., SANGSTER, N. C. & HENNESSY, D. R. ( 2005). Effect of ivermectin on feeding by Haemonchus contortus in vivo. Veterinary Parasitology 128, 341346.CrossRefGoogle Scholar
SHERIFF, J. C., KOTZE, A. C., SANGSTER, N. C. & MARTIN, R. J. ( 2002). Effects of macrocyclic lactone anthelmintics on feeding and pharyngeal pumping in Trichostrongylus colubriformis in vitro. Parasitology 125, 477484.CrossRefGoogle Scholar
SHOOP, W. L., HAINES, H. W., MICHAEL, B. F. & EARY, C. H. ( 1993). Mutual resistance to avermectins and milbemycins: oral activity of ivermectin and moxidectin against ivermectin-resistant and susceptible nematodes. Veterinary Record 133, 445447.CrossRefGoogle Scholar
SUTHERLAND, I. A., LEATHWICK, D. M., MOEN, I. C. & BISSET, S. A. ( 2002). Resistance to therapeutic treatment with macrocyclic lactones anthelmintic in Ostertagia circumcincta. Veterinary Parasitology 109, 9199.CrossRefGoogle Scholar
TRAILOVIC, S. M., ROBERTSON, A. P., CLARK, C. L. & MARTIN, R. J. ( 2002). Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. Journal of Experimental Biology 205, 39793988.Google Scholar
VINEY, M. E., GREEN, L. D., BROOKS, J. A. & GRANT, W. N. ( 2002). Chemical mutagenesis of the parasitic nematode Strongyloides ratti to isolate ivermectin resistant mutants. International Journal for Parasitology 32, 16771682.CrossRefGoogle Scholar
WALKER, J., HOEKSTRA, R., ROOS, M. H., WILEY, L. J., WEISS, A. S., SANGSTER, N. C. & TAIT, A. ( 2001). Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta. Veterinary Parasitology 97, 329335.CrossRefGoogle Scholar
WILEY, L. J., FERRARA, D. R., SANGSTER, N. C. & WEISS, A. S. ( 1997). The nicotinic acetylcholine α-subunit gene tar-1 is located on the X chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. Molecular and Biochemical Parasitology 90, 415422.CrossRefGoogle Scholar
WILLIAM, S. & BOTROS, S. ( 2004). Validation of sensitivity to praziquantel using Schistosoma mansoni worm muscle tension and Ca2+-uptake as possible in vitro correlates to in vivo ED50 determination. International Journal for Parasitology 34, 971977.CrossRefGoogle Scholar
WOLSTENHOLME, A. J., FAIRWEATHER, I., PRICHARD, R., VON SAMSON-HIMMELSTJERNA, G. & SANGSTER, N. ( 2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle Scholar
YATSUDA, A. P., KRIJGSVELD, J., CORNELISSEN, A. W., HECK, A. J. & DEVRIES, E. ( 2003). Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. Journal of Biological Chemistry 278, 1694116951.CrossRefGoogle Scholar