Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T12:08:32.473Z Has data issue: false hasContentIssue false

The role of Intelectin-2 in resistance to Ascaris suum lung larval burdens in susceptible and resistant mouse strains

Published online by Cambridge University Press:  24 February 2011

CHRISTINA DOLD*
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
ALAN D. PEMBERTON
Affiliation:
Division of Veterinary Clinical Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
PETER STAFFORD
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
CELIA V. HOLLAND
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
JERZY M. BEHNKE
Affiliation:
School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
*
*Corresponding author: Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland. Tel: +353 1 896 2194. Fax: +353 1 677 8094. E-mail: cdold@tcd.ie

Summary

The underlying mechanism of predisposition to Ascaris infection is not yet understood but host genetics are thought to play a fundamental role. We investigated the association between the Intelectin-2 gene and resistance in F2 mice derived from mouse strains known to be susceptible and resistant to infection. Ascaris larvae were isolated from murine lungs and the number of copies of the Intelectin-2 gene was determined in F2 mice. Intelectin-2 gene copy number was not significantly linked to larval burden. In a pilot experiment, the response to infection in parental mice of both sexes was observed in order to address the suitablity of female F2 mice. No overall significant sex effect was detected. However, a divergence in resistance/susceptibility status was observed between male and, female hybrid offspring. The responsiveness to Ascaris in mice is likely to be controlled by multiple genes and, despite a unique absence from the susceptible C57BL/6j strain, the Intelectin-2 gene does not play a significant role in resistance. The observed intra-strain variation in larval burden requires further investigation but we hypothesize that it stems from social/dominance hierarchies created by the presence of female mice and possibly subsequent hormonal perturbations that modify the intensity of the immune response.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acevedo, N., Mercado, D., Vergara, C., Sanchez, J., Kennedy, M. W., Jiménez, S., Fernández, A. M., Gutierrez, M., Puerta, L. and Caraballo, L. (2009). Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clinical and Experimental Immunology 157, 282290.CrossRefGoogle ScholarPubMed
Ahmed, S. A., Dauphinee, M. J. and Talal, N. (1985). Effects of short-term administration of sex hormones on normal and autoimmune mice. The Journal of Immunology 134, 204210.CrossRefGoogle Scholar
Alexander, J. and Stimson, W. H. (1988). Sex hormones and the course of parasitic infection. Parasitology Today 4, 189193.CrossRefGoogle Scholar
Artis, D. (2006). New weapons in the war on worms: identification of putative mechanisms of immune-mediated expulsion of gastrointestinal nematodes. International Journal for Parasitology 36, 723733.CrossRefGoogle ScholarPubMed
Barnard, C., Gilbert, F. and McGregor, P. (2007). Asking Questions in Biology. Prentice Hall, London, UK.Google Scholar
Barnard, C. J., Behnke, J. M. and Sewell, J. (1994). Social behaviour and susceptibility to infection in house mice (Mus musculus): effects of group size, aggressive behaviour and status-related hormonal responses prior to infection on resistance to Babesia microti. Parasitology 108, 487496.CrossRefGoogle ScholarPubMed
Barnard, C. J., Behnke, J. M., Gage, A. R., Brown, H. and Smithurst, P. R. (1997). Modulation of behaviour and testosterone concentration in immunodepressed male laboratory mice (Mus musculus). Physiology & Behaviour 61, 907917.CrossRefGoogle ScholarPubMed
Boes, J., Medley, G. F., Eriksen, L., Roepstorff, A. and Nansen, P. (1998). Distribution of Ascaris suum in experimentally and naturally infected pigs and comparison with Ascaris lumbricoides infections in humans. Parasitology 117, 589596.CrossRefGoogle ScholarPubMed
Bohus, B. and Koolhaas, J. M. (1991). Psychoimmunology of social factors in rodents and other subprimate vertebrates. In Psychoneuroimmunology, (ed. Adler, R., Felten, D. L. and Cohen, N.), pp. 807826. Academic Press, San Diego/New York/Boston, USA.CrossRefGoogle Scholar
Bone, L. W. and Bottjer, K. P. (1986). Nippostrongylus brasiliensis: effect of host hormones on helminth ingestion in vivo. International Journal for Parasitology 16, 7780.CrossRefGoogle ScholarPubMed
Chan, L., Kan, S. P. and Bundy, D. A. P. (1992). The effect of repeated chemotherapy on age-related predisposition to Ascaris lumbricoides and Trichuris trichiura. Parasitology 104, 371377.CrossRefGoogle ScholarPubMed
Chang, B. Y., Peavy, T. R., Wardrip, N. J. and Hedrick, J. L. (2004). The Xenopus laevis cortical granule lectin: cDNA cloning, developmental expression, and identification of the eglectin family of lectins. Comparative Biochemistry and Physiology, Part A 137, 115129.CrossRefGoogle ScholarPubMed
Chang, M. X. and Nie, P. (2007). Intelectin gene from the grass carp Ctenopharyngodon idella: cDNA cloning, tissue expression, and immunohistochemical localization. Fish and Shellfish Immunology 23, 128140.CrossRefGoogle ScholarPubMed
Charniga, L., Stewart, G. L., Kramar, G. W. and Stanfield, J. A. (1981). The effects of host sex on enteric response to infection with Trichinella spiralis. The Journal of Parasitology 67, 917922.CrossRefGoogle ScholarPubMed
Crompton, D. W. T. (2001). Ascaris and ascariasis. Advances in Parasitology 48, 285375.CrossRefGoogle ScholarPubMed
Datta, R., Deschoolmeester, M. L., Hedeler, C., Paton, N. W., Brass, A. M. and Else, K. J. (2005). Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infection and Immunity 73, 40254033.CrossRefGoogle ScholarPubMed
Dold, C., Cassidy, J. P., Stafford, P., Behnke, J. and Holland, C. (2010). Genetic influence on the kinetics and associated pathology of the early stage (intestinal-hepatic) migration of Ascaris suum in mice. Parasitology 137, 173185.CrossRefGoogle ScholarPubMed
Elkins, D. B., Haswell-Elkins, M. and Anderson, R. M. (1986). The epidemiology and control of intestinal helminths in the Pulicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 774792.CrossRefGoogle Scholar
Faulkner, H., Renauld, J. C., Van Snick, J. and Grencis, R. K. (1998). Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infection and Immunity 66, 38323840.CrossRefGoogle Scholar
Forrester, J. E., Scott, M. E., Bundy, D. A. P. and Golden, M. H. N. (1990). Predisposition of individuals and families in Mexico to heavy infection with Ascaris lumbricoides and Trichuris trichiura. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 272276.CrossRefGoogle ScholarPubMed
Grossman, C. J. (1985). Interactions between the gonadal steroids and the immune system. Science 227, 257261.CrossRefGoogle ScholarPubMed
Haley, A. J. (1958). Sex difference in the resistance of hamsters to infection with the rat nematode, Nippostrongylus muris. Experimental Parasitology 7, 338348.CrossRefGoogle ScholarPubMed
Hall, A., Anwar, K. S. and Tomkins, A. M. (1992). Intensity of reinfection with Ascaris lumbricoides and its implications for parasite control. The Lancet 339, 12531257.CrossRefGoogle ScholarPubMed
Harder, A., Wunderlich, F. and Marinovski, P. (1992). Effects of testosterone on Heterakis spumosa infections in mice. Parasitology 105, 335342.CrossRefGoogle ScholarPubMed
Harder, A., Danneschewski, A. and Wunderlich, F. (1994). Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitology Research 80, 446448.CrossRefGoogle ScholarPubMed
Haswell-Elkins, M. R., Elkins, D. B. and Anderson, R. M. (1987). Evidence for predisposition in humans to infection with Ascaris, hookworm, Enterobius, and Trichuris. Parasitology 95, 323337.CrossRefGoogle ScholarPubMed
Hayes, K. S., Bancroft, A. J. and Grencis, R. K. (2007). The role of TNF-alpha in Trichuris muris infection. I. Influence of TNF-alpha receptor usage, gender and IL-13. Parasite Immunology 29, 575582.CrossRefGoogle ScholarPubMed
Hepworth, M. R. and Grencis, R. K. (2009). Disruption of Th2 immunity results in a gender-specific expansion of IL-13 producing accessory NK cells during helminth infection. The Journal of Immunology 183, 39063914.CrossRefGoogle Scholar
Hepworth, M. R., Hardman, M. J. and Grencis, R. K. (2010). The role of sex hormones in the development of Th2 immunity in a gender biased model of Trichuris muris infection. European Journal of Immunology 40, 406416.CrossRefGoogle Scholar
Hillgarth, N. and Wingfield, J. C. (1997). Testosterone and immunosuppression in vertebrates: implications for parasite-mediated sexual selection. In Parasites and Pathogens: Effects on Host Hormones and Behavior (ed. Beckage, N. E.), pp. 143155. Springer, New York, USA.CrossRefGoogle Scholar
Holland, C. V., Asaolu, S. O., Crompton, D. W. T., Stoddart, R. C., MacDonald, R. and Torimiro, S. E. A. (1989). The epidemiology of Ascaris lumbricoides and other soil-transmitted helminths in primary school children from Ile-Ife, Nigeria. Parasitology 99, 275285.CrossRefGoogle ScholarPubMed
Holland, C. V., Crompton, D. W. T., Asaolu, S. O., Crichton, W. B., Torimiro, S. E. A. and Walters, D. E. (1992). A possible genetic factor influencing protection from infection with Ascaris lumbricoides in Nigerian children. Journal of Parasitology 78, 915916.CrossRefGoogle ScholarPubMed
Ishiwata, K., Nakao, H., Nakamura-Uchiyama, F. and Nawa, Y. (2002). Immune-mediated damage is not essential for the expulsion of Nippostrongylus brasiliensis adult worms from the small intestine of mice. Parasite Immunology 24, 381386.CrossRefGoogle Scholar
Kennedy, M. W., Gordon, A. M. S., Tomlinson, L. A. and Qureshi, F. (1986). Genetic (major histocompatibility complex?) control of the antibody repertoire to the secreted antigens of Ascaris. Parasite Immunology 9, 269273.CrossRefGoogle Scholar
Kiyota, M., Korenaga, M., Nawa, Y. and Kotani, M. (1984). Effect of androgen on the expression of the sex difference in susceptibility to infection with Strongyloides ratti in C57BL/6 mice. Australian Journal of Experimental Biology and Medical Science 62, 607618.CrossRefGoogle ScholarPubMed
Klein, S. L. (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neuroscience and Biobehavioral Reviews 24, 627638.CrossRefGoogle Scholar
Klein, S. L. (2004). Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology 26, 247264.CrossRefGoogle ScholarPubMed
Laudenslager, M. L. and Kennedy, S. (2008). Social dominance and immunity in animals. In Psychoneuroimmunology (ed. Ader, R.), pp. 475496. Academic Press, London, UK.Google Scholar
Lewis, R., Behnke, J. M., Stafford, P. and Holland, C. V. (2006). The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology 132, 289300.CrossRefGoogle ScholarPubMed
Lewis, R., Behnke, J. M., Cassidy, J. P., Stafford, P., Murray, N. and Holland, C. V. (2007). The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology 134, 13011314.CrossRefGoogle ScholarPubMed
Meddis, R. (1984). Statistics Using Ranks. A Unified Approach. Basil Blakwell Publishers Ltd, New York, USA.Google Scholar
Mitchell, G. F., Hogarth-Scott, R. S., Edwards, R. D., Lewers, H. M., Cousins, G. and Moore, T. (1976). Studies on immune responses to parasite antigens in mice. I. Ascaris suum larvae numbers and antiphosphorylcholine responses in infected mice of various strains and in hypothymic nu/nu mice. International Archives of Allergy and Applied Immunology 52, 6478.CrossRefGoogle ScholarPubMed
Nejsum, P., Roepstorff, A., Jørgensen, C. B., Fredholm, M., Göring, H. H. H., Anderson, T. J. C. and Thamsborg, S. M. (2009). High heritability for Ascaris and Trichuris infection levels in pigs. Heredity 102, 357364.CrossRefGoogle ScholarPubMed
O'Lorcain, P. and Holland, C. V. (2000). The public health importance of Ascaris lumbricoides. Parasitology 121, S51S71.CrossRefGoogle ScholarPubMed
Peisong, G., Mao, X. Q., Enomoto, T., Feng, Z., Gloria-Bottini, F., Bottini, E., Shirakawa, T., Sun, D. and Hopkin, J. M. (2004). An asthma-associated genetic variant of STAT6 predicts low burden of Ascaris worm infestation. Genes and Immunity 5, 5862.CrossRefGoogle ScholarPubMed
Pemberton, A. D., Knight, P. A., Gamble, J., Colledge, W. H., Lee, J., Pierce, M. and Miller, H. R. P. (2004 a). Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel lectin, intelectin-2 and its natural deletion in C57BL/10 mice. Journal of Immunology 173, 18941901.CrossRefGoogle ScholarPubMed
Pemberton, A. D., Knight, P. A., Wright, S. H. and Miller, H. R. P. (2004 b). Proteomic analysis of mouse jejunal epithelium and its response to infection with the intestinal nematode, Trichinella spiralis. Proteomics 4, 11011108.CrossRefGoogle ScholarPubMed
Peng, W., Xianmin, Z., Xiaomin, C., Crompton, D. W. T., Whitehead, R. R., Jiangqin, X., Haigeng, W., Jiyuan, P., Yang, Y. and Weixing, W. (1996). Ascaris, people and pigs in a rural community of Jiangxi Province, China. Parasitology 113, 545557.Google Scholar
Quinnell, R. J. (2003). Genetics of susceptibility to human helminth infection. International Journal for Parasitology 33, 12191231.CrossRefGoogle ScholarPubMed
Ramsay, C. E., Hayden, C. M., Tiller, K. J., Burton, P. R., Hagel, I., Palenque, M., Lynch, N. R., Goldblatt, J. and LeSouëf, P. N. (1999). Association of polymorphisms in the ß 2-adrenoreceptor gene with higher levels of parasitic infection. Human Genetics 104, 269274.CrossRefGoogle Scholar
Rohlf, F. J. and Sokal, R. R. (1995). Statistical Tables. W.H. Freeman and Company, San Francisco, CA, USA.Google Scholar
Solomon, G. B. (1966). Development of Nippostrongylus brasiliensis in gonadectomized and hormone-treated hamsters. Experimental Parasitology 18, 374396.CrossRefGoogle ScholarPubMed
Thein-Hlaing, , Saw, T. and Lwin, M. (1987). Reinfection of people with Ascaris lumbricoides following single, 6-month and 12-month interval mass chemotherapy in Okpo village, rural Burma. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 140146.CrossRefGoogle Scholar
Voehringer, D., Stanley, S. A., Cox, J. S., Completo, G. C., Lowary, T. L. and Locksley, R. M. (2007). Nippostrongylus brasiliensis: Identification of intelectin-1 and-2 as STAT6-dependent genes expressed in lung and intestine during infection. Experimental Parasitology 116, 458466.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., Subedi, J., Upadhayay, R. P., Manral, D. B., Rai, D. R., Jha, B., Robinson, E. S. and Blangero, J. (1999). Genetic analysis of susceptibility to infection with Ascaris lumbricoides. American Journal of Tropical Medicine and Hygiene 60, 921926.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Aivaliotis, M. J., Rai, D. R., Upadhayay, R. P., Jha, B. and Blangero, J. (2002). Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proceedings of the National Academy of Sciences, USA 99, 55335538.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Jha, B., Correa-Oliveira, R. and Blangero, J. (2008). Localization of multiple quantitative trait loci influencing susceptibility to infection with Ascaris lumbricoides. Journal of Infectious Diseases 197, 6671.CrossRefGoogle ScholarPubMed