Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:00:46.250Z Has data issue: false hasContentIssue false

Sex and Eimeria: a molecular perspective

Published online by Cambridge University Press:  19 August 2013

ROBERT A. WALKER
Affiliation:
Queensland Tropical Health Alliance Research Laboratory, James Cook University, Cairns Campus, McGregor Road, Smithfield QLD 4878, Australia
DAVID J. P. FERGUSON
Affiliation:
Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
CATHERINE M. D. MILLER
Affiliation:
School of Veterinary and Biomedical Sciences, James Cook University, Cairns Campus, McGregor Road, Smithfield QLD 4878, Australia
NICHOLAS C. SMITH*
Affiliation:
Queensland Tropical Health Alliance Research Laboratory, James Cook University, Cairns Campus, McGregor Road, Smithfield QLD 4878, Australia
*
*Corresponding author: Queensland Tropical Health Alliance Research Laboratory, Building E4, James Cook University, Cairns Campus, McGregor Road, Smithfield, QLD 4878, Australia. E-mail: nicholas.smith@jcu.edu.au

Summary

Eimeria is a common genus of apicomplexan parasites that infect diverse vertebrates, most notably poultry, causing serious disease and economic loss. Like all apicomplexans, eimerians have a complex life cycle characterized by asexual divisions that amplify the parasite population in preparation for sexual reproduction. This can be divided into three events: gametocytogenesis, producing gametocytes from merozoites; gametogenesis, producing microgametes and macrogametes from gametocytes; and fertilization of macrogametes by microgametes, producing diploid zygotes with ensuing meiosis completing the sexual phase. Sexual development in Eimeria depends on the differential expression of stage-specific genes, rather than presence or absence of sex chromosomes. Thus, it involves the generation of specific structures and, implicitly, storage of proteins and regulation of protein expression in macrogametes, in preparation for fertilization. In Eimeria, the formation of a unique, resilient structure, the oocyst wall, is essential for completion of the sexual phase and parasite transmission. In this review, we piece together the molecular events that underpin sexual reproduction in Eimeria and use additional details from analogous events in Plasmodium to fill current knowledge gaps. The mechanisms governing sexual stage formation and subsequent fertilization may represent targets for counteracting parasite transmission.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. A., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W. and Taylor, M. F. J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52, 399451.CrossRefGoogle ScholarPubMed
Alano, P. (2007). Plasmodium falciparum gametocytes: still many secrets of a hidden life. Molecular Microbiology 66, 291302.CrossRefGoogle ScholarPubMed
Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T., Bhatti, S., Smith, D. K., Luo, C., Hansra, S., Carter, R. and Elliott, J. F. (1995). COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Molecular and Biochemical Parasitology 74, 143156.CrossRefGoogle ScholarPubMed
Alonso, P. L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., Doumbo, O. K., Greenwood, B., Hall, B. F., Levine, M. M., Mendis, K., Newman, R. D., Plowe, C. V., Rodriguez, M. H., Sinden, R., Slutsker, L. and Tanner, M. (2011). A research agenda to underpin malaria eradication. PLoS Medicine 8, e1000406.CrossRefGoogle ScholarPubMed
Babiker, H. A., Ranford-Cartwright, L. C., Currie, D., Charlwood, J. D., Billingsley, P., Teuscher, T. and Walliker, D. (1994). Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109, 413421.CrossRefGoogle Scholar
Baker, D. A. (2010). Malaria gametocytogenesis. Molecular and Biochemical Parasitology 172, 5765.CrossRefGoogle ScholarPubMed
Balaji, S., Babu, M. M., Iyer, L. M. and Aravind, L. (2005). Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Research 33, 39944006.CrossRefGoogle ScholarPubMed
Ball, S. J., Pittilo, R. M., Joyner, L. P. and Norton, C. C. (1981). Scanning and transmission electron microscopy of Eimeria maxima microgametogenesis. Parasitology 82, 131135.CrossRefGoogle ScholarPubMed
Beier, T. V. and Sidorenko, N. V. (1990). [An electron microscopic study of Cryptosporidium. II. The stages of gametogenesis and sporogony in Cryptosporidium parvum.] Tsitologiia 32, 592598.Google ScholarPubMed
Belli, S. I., Witcombe, D., Wallach, M. G. and Smith, N. C. (2002). Functional genomics of gam56: characterisation of the role of a 56 kilodalton sexual stage antigen in oocyst wall formation in Eimeria maxima. International Journal for Parasitology 32, 17271737.CrossRefGoogle ScholarPubMed
Belli, S. I., Wallach, M. G., Luxford, C., Davies, M. J. and Smith, N. C. (2003 a). Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima. Eukaryotic Cell 2, 456464.CrossRefGoogle ScholarPubMed
Belli, S. I., Wallach, M. G. and Smith, N. C. (2003 b). Cloning and characterization of the 82 kDa tyrosine-rich sexual stage glycoprotein, GAM82, and its role in oocyst wall formation in the apicomplexan parasite, Eimeria maxima. Gene 307, 201212.CrossRefGoogle ScholarPubMed
Belli, S. I., Smith, N. C. and Ferguson, D. J. P. (2006). The coccidian oocyst: a tough nut to crack! Trends in Parasitology 22, 416423.CrossRefGoogle ScholarPubMed
Belli, S. I., Ferguson, D. J., Katrib, M., Slapetova, I., Mai, K., Slapeta, J., Flowers, S. A., Miska, K. B., Tomley, F. M., Shirley, M. W., Wallach, M. G. and Smith, N. C. (2009). Conservation of proteins involved in oocyst wall formation in Eimeria maxima, Eimeria tenella and Eimeria acervulina. International Journal for Parasitology 39, 10631070.CrossRefGoogle ScholarPubMed
Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B. and Brinkmann, V. (2004). Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503514.CrossRefGoogle Scholar
Billker, O., Lourido, S. and Sibley, L. D. (2009). Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host and Microbe 5, 612622.CrossRefGoogle ScholarPubMed
Blake, D. P., Hesketh, P., Archer, A., Carroll, F., Smith, A. L. and Shirley, M. W. (2004). Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entree to the identification of protective antigens. Molecular and Biochemical Parasitology 138, 143152.CrossRefGoogle Scholar
Blake, D. P., Alias, H., Billington, K. J., Clark, E. L., Mat-Isa, M. N., Mohamad, A. F., Mohd-Amin, M. R., Tay, Y. L., Smith, A. L., Tomley, F. M. and Wan, K. L. (2012). EmaxDB: availability of a first draft genome sequence for the apicomplexan Eimeria maxima. Molecular and Biochemical Parasitology 184, 4851.CrossRefGoogle ScholarPubMed
Briggs, L. J., Davidge, J. A., Wickstead, B., Ginger, M. L. and Gull, K. (2004). More than one way to build a flagellum: comparative genomics of parasitic protozoa. Current Biology 14, R611R612.CrossRefGoogle ScholarPubMed
Buckling, A., Crooks, L. and Read, A. (1999 a). Plasmodium chabaudi: effect of antimalarial drugs on gametocytogenesis. Experimental Parasitology 93, 4554.CrossRefGoogle ScholarPubMed
Buckling, A., Ranford-Cartwright, L. C., Miles, A. and Read, A. F. (1999 b). Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 118, 339346.CrossRefGoogle ScholarPubMed
Bushkin, G. G., Motari, E., Magnelli, P., Gubbels, M. J., Dubey, J. P., Miska, K. B., Bullitt, E., Costello, C. E., Robbins, P. W. and Samuelson, J. (2012). Beta-1,3-glucan, which can be targeted by drugs, forms a trabecular scaffold in the oocyst walls of Toxoplasma and Eimeria. MBio 3, e00258-12.CrossRefGoogle Scholar
Cheadle, M. A., Toivio-Kinnucan, M. and Blagburn, B. L. (1999). The ultrastructure of gametogenesis of Cryptosporidium baileyi (eimeriorina; cryptosporidiidae) in the respiratory tract of broiler chickens (Gallus domesticus). Journal of Parasitology 85, 609615.CrossRefGoogle ScholarPubMed
Chen, L. L., Rekosh, D. M. and LoVerde, P. T. (1992). Schistosoma mansoni p48 eggshell protein gene: characterization, developmentally regulated expression and comparison to the p14 eggshell protein gene. Molecular and Biochemical Parasitology 52, 3952.CrossRefGoogle Scholar
Conway, D. J., Roper, C., Oduola, A. M., Arnot, D. E., Kremsner, P. G., Grobusch, M. P., Curtis, C. F. and Greenwood, B. M. (1999). High recombination rate in natural populations of Plasmodium falciparum. Proceedings of the National Academy of Sciences USA 96, 45064511.CrossRefGoogle ScholarPubMed
Cornelissen, A. W. C. A. (1988). Sex determination and sex differentiation in malaria parasites. Biological Reviews of the Cambridge Philosophical Society (London) 63, 379394.CrossRefGoogle ScholarPubMed
Day, K. P., Koella, J. C., Nee, S., Gupta, S. and Read, A. F. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104(Suppl.), S35S52.CrossRefGoogle ScholarPubMed
Day, K. P., Karamalis, F., Thompson, J., Barnes, D. A., Peterson, C., Brown, H., Brown, G. V. and Kemp, D. J. (1993). Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0·3-megabase region of chromosome 9. Proceedings of the National Academy of Sciences USA 90, 82928296.CrossRefGoogle ScholarPubMed
de Koning-Ward, T. F., Olivieri, A., Bertuccini, L., Hood, A., Silvestrini, F., Charvalias, K., Berzosa Diaz, P., Camarda, G., McElwain, T. F., Papenfuss, T., Healer, J., Baldassarri, L., Crabb, B. S., Alano, P. and Ranford-Cartwright, L. C. (2008). The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum. Molecular Microbiology 67, 278290.CrossRefGoogle ScholarPubMed
Dixon, M. W., Dearnley, M. K., Hanssen, E., Gilberger, T. and Tilley, L. (2012). Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends in Parasitology 28, 471478.CrossRefGoogle Scholar
Dorin-Semblat, D., Quashie, N., Halbert, J., Sicard, A., Doerig, C., Peat, E. and Ranford-Cartwright, L. (2007). Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics. Molecular Microbiology 65, 11701180.CrossRefGoogle ScholarPubMed
Elwasila, M. (1983). The fine structure of an early stage in the process of fertilization of Eimeria maxima (Apicomplexa, eimeriina). Zeitschrift für Parasitenkunde 69, 135138.CrossRefGoogle ScholarPubMed
Elwasila, M. (1984). Fine structure of the process of oocyst wall formation of Eimeria maxima (Apicomplexa: Eimeriina). Acta Veterinaria Hungarica 32, 159163.Google ScholarPubMed
Engel, U., Ozbek, S., Streitwolf-Engel, R., Petri, B., Lottspeich, F. and Holstein, T. W. (2002). Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra. Journal of Cell Science 115, 39233934.CrossRefGoogle ScholarPubMed
Feng, X., Rich, S. M., Tzipori, S. and Widmer, G. (2002). Experimental evidence for genetic recombination in the opportunistic pathogen Cryptosporidium parvum. Molecular and Biochemical Parasitology 119, 5562.CrossRefGoogle ScholarPubMed
Ferguson, D. J. (2002). Toxoplasma gondii and sex: essential or optional extra? Trends in Parasitology 18, 355359.CrossRefGoogle ScholarPubMed
Ferguson, D. J. and Dubremetz, J. F. (2007). The ultrastructure of Toxoplasma gondii. In Toxoplasma gondii: the Model Apicomplexan – Perspectives and Methods (ed. Weiss, L. M. and Kim, K.), pp. 1948. Academic Press, London, UK.CrossRefGoogle Scholar
Ferguson, D. J., Hutchison, W. M., Dunachie, J. F. and Siim, J. C. (1974). Ultrastructural study of early stages of asexual multiplication and microgametogony of Toxoplasma gondii in the small intestine of the cat. Acta Pathologica et Microbiologica Scandinavica B 82, 167181.Google ScholarPubMed
Ferguson, D. J., Hutchison, W. M. and Siim, J. C. (1975). The ultrastructural development of the macrogamete and formation of the oocyst wall of Toxoplasma gondii. Acta Pathologica et Microbiologica Scandinavica B 83, 491505.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Birch-Andersen, A., Hutchison, W. M. and Siim, J. C. (1977). Ultrastructural studies on the endogenous development of Eimeria brunetti. II. Microgametogony and the microgamete. Acta Pathologica et Microbiologica Scandinavica B 85B, 6777.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Belli, S. I., Smith, N. C. and Wallach, M. G. (2003). The development of the macrogamete and oocyst wall in Eimeria maxima: immuno-light and electron microscopy. International Journal for Parasitology 33, 13291340.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Campbell, S. A., Henriquez, F. L., Phan, L., Mui, E., Richards, T. A., Muench, S. P., Allary, M., Lu, J. Z., Prigge, S. T., Tomley, F., Shirley, M. W., Rice, D. W., McLeod, R. and Roberts, C. W. (2007). Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. International Journal for Parasitology 37, 3351.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Sahoo, N., Pinches, R. A., Bumstead, J. M., Tomley, F. M. and Gubbels, M-J. (2008). MORN1 has a conserved role in asexual and sexual development across the Apicomplexa. Eukaryotic Cell 7, 698711.CrossRefGoogle Scholar
Ferguson, J. P., Becht, S. and Soldati, D. (2000). The microneme protein MIC4, or a MIC4-like protein, is expressed within the macrogamete and associated with oocyst wall formation in Toxoplasma gondii. International Journal for Parasitology 30, 12031209.CrossRefGoogle ScholarPubMed
Fernando, M. A. (1973). Fine structural changes associated with microgametogenesis of Eimeria acervulina in chickens. Zeitshrift für Parasitenkunde 43, 3342.CrossRefGoogle ScholarPubMed
Fritz, H. M., Bowyer, P. W., Bogyo, M., Conrad, P. A. and Boothroyd, J. C. (2012 a). Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PLoS ONE 7, e29955.CrossRefGoogle ScholarPubMed
Fritz, H. M., Buchholz, K. R., Chen, X., Durbin-Johnson, B., Rocke, D. M., Conrad, P. A. and Boothroyd, J. C. (2012 b). Transcriptomic analysis of Toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS ONE 7, e29998.CrossRefGoogle ScholarPubMed
Furuya, T., Mu, J., Hayton, K., Liu, A., Duan, J., Nkrumah, L., Joy, D. A., Fidock, D. A., Fujioka, H., Vaidya, A. B., Wellems, T. E. and Su, X. Z. (2005). Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proceedings of the National Academy of Sciences USA 102, 1681316818.CrossRefGoogle ScholarPubMed
Grigg, M. E., Bonnefoy, S., Hehl, A. B., Suzuki, Y. and Boothroyd, J. C. (2001). Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science 294, 161165.CrossRefGoogle ScholarPubMed
Guttery, D. S., Ferguson, D. J. P., Poulin, B., Xu, Z., Straschil, U., Klop, O., Solyakov, L., Sandrini, S. M., Brady, D., Nieduszynski, C. A., Janse, C. A., Holder, A. A. and Tewari, R. (2012 a). A putative homologue of CDC20/CDH1 in the malaria parasites is essential for male gamete development. PLoS Pathogens 8, e1002554.CrossRefGoogle ScholarPubMed
Guttery, D. S., Poulin, B., Ferguson, D. J. P., Szoor, B., Wickstead, B., Carroll, P. L., Ramakrishnan, C., Brady, D., Patzewitz, E.-M., Straschil, U., Solyakov, L., Green, J. L., Sinden, R. E., Tobin, A. B., Holder, A. A. and Tewari, R. (2012 b). A unique protein phosphatase with Kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathogens 8, e1002948.CrossRefGoogle ScholarPubMed
Hastings, I. M. and Watkins, W. M. (2005). Intensity of malaria transmission and the evolution of drug resistance. Acta Tropica 94, 218229.CrossRefGoogle ScholarPubMed
Hijjawi, N. S., Meloni, B. P., Ng'anzo, M., Ryan, U. M., Olson, M. E., Cox, P. T., Monis, P. T. and Thompson, R. C. (2004). Complete development of Cryptosporidium parvum in host cell-free culture. International Journal for Parasitology 34, 769777.CrossRefGoogle ScholarPubMed
Hirai, M., Arai, M., Mori, T., Miyagishima, S. Y., Kawai, S., Kita, K., Kuroiwa, T., Terenius, O. and Matsuoka, H. (2008). Male fertility of malaria parasites is determined by GCS1, a plant-type reproduction factor. Current Biology 18, 607613.CrossRefGoogle ScholarPubMed
Hughes, K. R., Philip, N., Starnes, G. L., Taylor, S. and Waters, A. P. (2010). From cradle to grave: RNA biology in malaria parasites. Wiley Interdisciplinary Reviews: RNA 1, 287303.CrossRefGoogle ScholarPubMed
Ishino, T., Orito, Y., Chinzei, Y. and Yuda, M. (2006). A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molecular Microbiology 59, 11751184.CrossRefGoogle Scholar
Janse, C. J. and Waters, A. P. (2004). Sexual development of malaria parasites. In Malaria Parasites: Genome and Molecular Biology (ed. Janse, C. J. and Waters, A. P.), pp. 445474. Caister Academic Press, Wymondham, UK.Google Scholar
Janse, C. J., van der Klooster, H. J., van der Kaay, H. J., van der Ploeg, M. and Overdulve, J. P. (1986). DNA synthesis in Plasmodium berghei during asexual and sexual development. Molecular and Biochemical Parasitology 20, 173182.CrossRefGoogle ScholarPubMed
Joyner, L. P. and Norton, C. C. (1975). Transferred drug-resistance in Eimeria maxima. Parasitology 71, 385392.CrossRefGoogle ScholarPubMed
Katrib, M., Ikin, R. J., Brossier, F., Robinson, M., Slapetova, I., Sharman, P. A., Walker, R. A., Belli, S. I., Tomley, F. M. and Smith, N. C. (2012). Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 13, 685.CrossRefGoogle ScholarPubMed
Katzer, F., Ngugi, D., Oura, C., Bishop, R. P., Taracha, E. L., Walker, A. R. and McKeever, D. J. (2006). Extensive genotypic diversity in a recombining population of the apicomplexan parasite Theileria parva. Infection and Immunity 74, 54565464.CrossRefGoogle Scholar
Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, M. and Waters, A. P. (2005). Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675687.CrossRefGoogle ScholarPubMed
Klimes, B., Rootes, D. G. and Tanielian, Z. (1972). Sexual differentiation of merozoites of Eimeria tenella. Parasitology 65, 131136.CrossRefGoogle ScholarPubMed
Krucken, J., Hosse, R. J., Mouafo, A. N., Entzeroth, R., Bierbaum, S., Marinovski, P., Hain, K., Greif, G. and Wunderlich, F. (2008). Excystation of Eimeria tenella sporozoites impaired by antibody recognizing gametocyte/oocyst antigens GAM22 and GAM56. Eukaryotic Cell 7, 202211.CrossRefGoogle ScholarPubMed
Kuehn, A. and Pradel, G. (2010). The coming-out of malaria gametocytes. Journal of Biomedicine and Biotechnology 2010, 976827. doi: 10.1155/2010/976827.CrossRefGoogle ScholarPubMed
Lal, K., Delves, M. J., Bromley, E., Wastling, J. M., Tomley, F. M. and Sinden, R. E. (2009). Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. International Journal for Parasitology 39, 755761.CrossRefGoogle ScholarPubMed
Lally, N. C., Baird, G. D., McQuay, S. J., Wright, F. and Oliver, J. J. (1992). A 2359-base pair DNA fragment from Cryptosporidium parvum encoding a repetitive oocyst protein. Molecular and Biochemical Parasitology 56, 6978.CrossRefGoogle ScholarPubMed
Lanfrancotti, A., Bertuccini, L., Silvestrini, F. and Alano, P. (2007). Plasmodium falciparum: mRNA co-expression and protein co-localisation of two gene products upregulated in early gametocytes. Experimental Parasitology 116, 497503.CrossRefGoogle ScholarPubMed
Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. W., Eling, W. M., Hall, N., Waters, A. P., Stunnenberg, H. G. and Mann, M. (2002). Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537542.CrossRefGoogle ScholarPubMed
Laurentino, E. C., Taylor, S., Mair, G. R., Lasonder, E., Bartfai, R., Stunnenberg, H. G., Kroeze, H., Ramesar, J., Franke-fayard, B., Khan, S. M., Janse, C. J. and Waters, A. P. (2011). Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cellular Microbiology 13, 19561964.CrossRefGoogle ScholarPubMed
Laxer, M. A., Healey, M. C. and Youssef, N. N. (1987). Production of monoclonal antibodies specific for Eimeria tenella microgametocytes. Journal of Parasitology 73, 611616.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., de la Vega, P., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. (2003). Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 15031508.CrossRefGoogle ScholarPubMed
Liu, Y., Tewari, R., Ning, J., Blagborough, A. M., Garbom, S., Pei, J., Grishin, N. V., Steele, R. E., Sinden, R. E., Snell, W. J. and Billker, O. (2008). The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes and Development 22, 10511068.CrossRefGoogle ScholarPubMed
Long, P. L. (1972). Observations on the oocyst production and viability of Eimeria mivati and E. tenella in the chorioallantois of chicken embryos incubated at different temperatures. Zeitschrift für Parasitenkunde 39, 2737.CrossRefGoogle Scholar
MacCallum, W. G. (1897). On the flagellated form of the malaria parasite. Lancet 2, 12401241.CrossRefGoogle Scholar
Madden, P. A. and Vetterling, J. M. (1977). Scanning electron microscopy of Eimeria tenella microgametogenesis and fertilization. Journal of Parasitology 63, 607610.CrossRefGoogle ScholarPubMed
Mai, K., Sharman, P. A., Walker, R. A., Katrib, M., De Souza, D., McConville, M. J., Wallach, M. G., Belli, S. I., Ferguson, D. J. and Smith, N. C. (2009). Oocyst wall formation and composition in coccidian parasites. Memõrias do Instituto Oswaldo Cruz 104, 281289.CrossRefGoogle ScholarPubMed
Mai, K., Smith, N. C., Feng, Z.-P., Karib, M., Slapeta, J., Slapetova, I., Wallach, M. G., Luxford, C., Davies, M. J., Zhang, X., Norton, R. S. and Belli, S. I. (2011). Peroxidase catalysed cross-linking of an intrinsically unstructured protein via dityrosine bonds in the oocyst wall of the apicomplexan parasite, Eimeria maxima. International Journal for Parasitology 41, 11571164.CrossRefGoogle ScholarPubMed
Mair, G. R., Braks, J. A., Garver, L. S., Wiegant, J. C., Hall, N., Dirks, R. W., Khan, S. M., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2006). Regulation of sexual development of Plasmodium by translational repression. Science 313, 667669.CrossRefGoogle ScholarPubMed
Mair, G. R., Lasonder, E., Garver, L. S., Franke-Fayard, B. M. D., Carret, C. K., Wiegant, J. C. A. G., Dirks, R. W., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2010). Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathogens 6, e1000767.CrossRefGoogle ScholarPubMed
Martin, S. K., Jett, M. and Schneider, I. (1994). Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. Journal of Parasitology 80, 371378.CrossRefGoogle ScholarPubMed
McDonald, V. and Rose, M. E. (1987). Eimeria tenella and E. necatrix: a third generation of schizogony is an obligatory part of the developmental cycle. Journal of Parasitology 73, 617622.CrossRefGoogle Scholar
McRobert, L., Taylor, C. J., Deng, W., Fivelman, Q. L., Cummings, R. M., Polley, S. D., Billker, O. and Baker, D. A. (2008). Gametogenesis in malaria parasites is mediated by the cGMP-dependent proein kinase. PLoS Biology 6, e139.CrossRefGoogle Scholar
Mehlhorn, H. and Schein, E. (1976). [Electron microscope studies on developmental stages of Theileria parva (Theiler, 1904) in the intestine of the tick Hyalomma anatolicum excavatum (Koch, 1844) (author's transl).] Tropenmedezin und Parasitologie 27, 182191.Google ScholarPubMed
Mehlhorn, H. and Schein, E. (1977). Electron microscopic studies of the development of kinetes in Theileria annulata Dschunkowsky &Luhs, 1904 (Sporozoa, Piroplasmea). Journal of Protozoology 24, 249257.CrossRefGoogle ScholarPubMed
Mehlhorn, H., Weber, G., Schein, E. and Buscher, G. (1975). [Electron microscope studies on development stages of Theileria annulata (Dschunkowsky, Luhs, 1904) in the intestine and haemolymph of Hyalomma anatolicum excavatum (Koch, 1844) (author's transl).] Zeitschrift für Parasitenkunde 48, 137150.CrossRefGoogle ScholarPubMed
Miao, J., Li, J., Fan, Q., Li, X. and Cui, L. (2010). The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. Journal of Cell Science 123, 10391049.CrossRefGoogle ScholarPubMed
Moreira, C. K., Marrelli, M. T. and Jacobs-Lorena, M. (2004). Gene expression in Plasmodium: from gametocytes to sporozoites. International Journal for Parasitology 34, 14311440.CrossRefGoogle ScholarPubMed
Mouafo, A. N., Weck-Heimann, A., Dubremetz, J. F. and Entzeroth, R. (2002). Monoclonal antibodies specific for the two types of wall-forming bodies of Eimeria tenella macrogametes (Coccidia, Apicomplexa). Parasitology Research 88, 217224.CrossRefGoogle ScholarPubMed
Omoto, C. K., Toso, M., Tang, K. and Sibley, L. D. (2004). Expressed sequence tag (EST) analysis of Gregarine gametocyst development. International Journal for Parasitology 34, 12651271.CrossRefGoogle ScholarPubMed
Otto, T. D., Wilinski, D., Assefa, S., Keane, T. M., Sarry, L. R., Bohme, U., Lemieux, J., Barrell, B., Pain, A., Berriman, M., Newbold, C. and Llinas, M. (2010). New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Molecular Microbiology 76, 1224.CrossRefGoogle ScholarPubMed
Ozbek, S., Pokidysheva, E., Schwager, M., Schulthess, T., Tariq, N., Barth, D., Milbradt, A. G., Moroder, L., Engel, J. and Holstein, T. W. (2004). The glycoprotein NOWA and minicollagens are part of a disulfide-linked polymer that forms the cnidarian nematocyst wall. Journal of Biological Chemistry 279, 5201652023.CrossRefGoogle ScholarPubMed
Pelster, B. and Piekarski, G. (1971). [Electron microscopical studies on the microgametogony of Toxoplasma gondii.] Zeitschrift für Parasitenkunde 37, 267277.Google Scholar
Pelster, B. and Piekarski, G. (1972). [Ultrastructure of the macrogametes in Toxoplasma gondii.] Zeitschrift für Parasitenkunde 39, 225232.CrossRefGoogle ScholarPubMed
Pfefferkorn, L. C. and Pfefferkorn, E. R. (1980). Toxoplasma gondii: genetic recombination between drug resistant mutants. Experimental Parasitology 50, 305316.CrossRefGoogle ScholarPubMed
Pittilo, R. M. and Ball, S. J. (1979). The fine structure of the developing macrogamete of Eimeria maxima. Parasitology 79, 259265.CrossRefGoogle ScholarPubMed
Pittilo, R. M. and Ball, S. J. (1980). The ultrastructural development of the oocyst wall of Eimeria maxima. Parasitology 81, 115122.CrossRefGoogle ScholarPubMed
Ponzi, M., Siden-Kiamos, I., Bertuccini, L., Curra, C., Kroeze, H., Camarda, G., Pace, T., Franke-Fayard, B., Laurentino, E. C., Louis, C., Waters, A. P., Janse, C. J. and Alano, P. (2009). Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cellular Microbiology 11, 12721288.CrossRefGoogle ScholarPubMed
Possenti, A., Cherchi, S., Bertuccini, L., Pozio, E., Dubey, J. P. and Spano, F. (2010). Molecular characterisation of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localisation. International Journal for Parasitology 40, 16391649.CrossRefGoogle ScholarPubMed
Raabe, A. C., Wengelnik, K., Billker, O. and Vial, H. I. (2011). Multiple roles for Plasmodium berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation and differentiation. Cellular Microbiology 13, 955966.CrossRefGoogle ScholarPubMed
Ramasamy, M. S., Kulasekera, R., Wanniarachchi, I. C., Srikrishnaraj, K. A. and Ramasamy, R. (1997). Interactions of human malaria parasites, Plasmodium vivax and P. falciparum, with the midgut of Anopheles mosquitoes. Medical and Veterinary Entomology 11, 290296.CrossRefGoogle ScholarPubMed
Ranford-Cartwright, L. C., Balfe, P., Carter, R. and Wallijer, D. (1991). Genetic hybrids of Plasmodium falciparum identified by amplification of genomic DNA from single oocysts. Molecular and Biochemical Parasitology 49, 239243.CrossRefGoogle ScholarPubMed
Rangarajan, R., Bei, A. K., Jethwaney, D., Maldonado, P., Dorin, D., Sultan, A. A. and Doerig, C. (2005). A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Reports 6, 464469.CrossRefGoogle ScholarPubMed
Ranjan, R., Ahmed, A., Gourinath, S. and Sharma, P. (2009). Dissection of mechanisms involved in the regulation of Plasmodium falciparum calcium-dependent protein kinase 4. Journal of Biological Chemistry 284, 1526715276.CrossRefGoogle ScholarPubMed
Ranucci, L., Muller, H. M., La Rosa, G., Reckmann, I., Morales, M. A., Spano, F., Pozio, E. and Crisanti, A. (1993). Characterization and immunolocalization of a Cryptosporidium protein containing repeated amino acid motifs. Infection and Immunity 61, 23472356.CrossRefGoogle ScholarPubMed
Reininger, L., Billker, O., Tewari, R., Mukhopadhyay, A., Fennell, C., Dorin-Semblat, D., Doerig, C., Goldring, D., Harmse, L., Ranford-Cartwright, L. and Packer, J. (2005). A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. Journal of Biological Chemistry 280, 3195731964.CrossRefGoogle ScholarPubMed
Reininger, L., Tewari, R., Fennell, C., Holland, Z., Goldring, D., Ranford-Cartwright, L., Billker, O. and Doerig, C. (2009). An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. Journal of Biological Chemistry 284, 2085820868.CrossRefGoogle ScholarPubMed
Rose, M. E. (1987). Eimeria, Isospora, and Cryptosporidium. In Immunology, Immunopathology and Immunoprophylaxis of Parasitic Infections (ed. Soulsby, E. J. L.), pp. 275312. CRC Press, Florida, USA.Google Scholar
Rupp, I., Bosse, R., Schirmeister, T. and Pradel, G. (2008). Effect of protease inhibitors on exflagellation in Plasmodium falciparum. Molecular and Biochemical Parasitology 158, 208212.CrossRefGoogle ScholarPubMed
Scholtyseck, E., Mehlhorn, H. and Hammond, D. M. (1971). Fine structure of macrogametes and oocysts of Coccidia and related organisms. Zeitschrift für Parasitenkunde 37, 143.CrossRefGoogle ScholarPubMed
Scholtyseck, E., Mehlhorn, H. and Hammond, D. M. (1972). Electron microscope studies of microgametogenesis in Coccidia and related groups. Zeitschrift für Parasitenkunde 38, 95131.CrossRefGoogle ScholarPubMed
Scholz, S. M., Simon, N., Lavazec, C., Dude, M. A., Templeton, T. J. and Pradel, G. (2008). PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. International Journal for Parasitology 38, 327340.CrossRefGoogle ScholarPubMed
Sebastian, S., Brochet, M., Collins, M. O., Schwach, F., Jones, M. L., Goulding, D., Rayner, J. C., Choudhary, J. S. and Billker, O. (2012). A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host and Microbe 12, 919.CrossRefGoogle ScholarPubMed
Severini, C., Silvestrini, F., Sannella, A., Barca, S., Gradoni, L. and Alano, P. (1999). The production of the osmiophilic body protein Pfg377 is associated with stage of maturation and sex in Plasmodium falciparum gametocytes. Molecular and Biochemical Parasitology 100, 247252.CrossRefGoogle ScholarPubMed
Sharman, P. A., Smith, N. C., Wallach, M. G. and Katrib, M. (2010). Chasing the golden egg: vaccination against poultry coccidiosis. Parasite Immunology 32, 590598.CrossRefGoogle ScholarPubMed
Shirley, M. W. (1978). Electrophoretic variation of enzymes: a further marker for genetic studies of the Eimeria. Zeitschrift für Parasitenkunde 57, 8387.CrossRefGoogle ScholarPubMed
Shirley, M. W. and Harvey, D. A. (1996). Eimeria tenella: genetic recombination of markers for precocious development and arprinocid resistance. Applied Parasitology 37, 293299.Google ScholarPubMed
Sibley, L. D. and Ajioka, J. W. (2008). Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annual Review of Microbiology 62, 329351.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Ecker, A., Nyback, S., Louis, C., Sinden, R. E. and Billker, O. (2006). Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Molecular Microbiology 60, 13551363.CrossRefGoogle ScholarPubMed
Silvestrini, F., Alano, P. and Williams, J. L. (2000). Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. Parasitology 121, 465471.CrossRefGoogle Scholar
Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Giulio, E. D., Bultrini, E., Picci, L., Derisi, J. L., Pizzi, E. and Alano, P. (2005). Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology 143, 100110.CrossRefGoogle ScholarPubMed
Simon, N., Scholz, S. M., Moreira, C. K., Templeton, T. J., Kuehn, A., Dude, M. A. and Pradel, G. (2009). Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. Journal of Biological Chemistry 284, 1453714546.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1982). Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84, 111.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1983). The cell biology of sexual development in Plasmodium. Parasitology 86, 728.CrossRefGoogle ScholarPubMed
Sinden, R. E. (2009). Malaria, sexual development and transmission: retrospect and prospect. Parasitology 136, 14271434.CrossRefGoogle ScholarPubMed
Sinden, R. E. and Croll, N. A. (1975). Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis. Parasitology 70, 5365.CrossRefGoogle ScholarPubMed
Sinden, R. E., Canning, E. U. and Spain, B. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of the Royal Society of London B: Biological Sciences 193, 5576.Google ScholarPubMed
Sinden, R. E., Hartley, R. H. and Winger, L. (1985). The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91, 227244.CrossRefGoogle ScholarPubMed
Sinden, R. E., Talman, A., Marques, S. R., Wass, M. N. and Sternberg, M. J. E. (2010). The flagellum in malarial parasites. Current Opinion in Microbiology 13, 491500.CrossRefGoogle ScholarPubMed
Sinden, R. E., Carter, R., Drakeley, C. and Leroy, D. (2012). The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malaria Journal 11, 70.CrossRefGoogle ScholarPubMed
Smalley, M. E., Brown, J. and Bassett, N. M. (1981). The rate of production of Plasmodium falciparum gametocytes during natural infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 318319.CrossRefGoogle ScholarPubMed
Smith, T. G., Lourenco, P., Carter, R., Walliker, D. and Ranford-Cartwright, L. C. (2000). Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 121, 127133.CrossRefGoogle ScholarPubMed
Smith, T. G., Walliker, D. and Ranford-Cartwright, L. C. (2002). Sexual differentiation and sex determination in the Apicomplexa. Trends in Parasitology 18, 315323.CrossRefGoogle ScholarPubMed
Spano, F., Puri, C., Ranucci, L., Putignani, L. and Crisanti, A. (1997). Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114, 427437.CrossRefGoogle ScholarPubMed
Speer, C. A. and Danforth, H. D. (1976). Fine-structural aspects of microgametogenesis of Eimeria magna in rabbits and in kidney cell cultures. Journal of Protozoology 23, 109115.CrossRefGoogle ScholarPubMed
Speer, C. A. and Dubey, J. P. (2005). Ultrastructural differentiation of Toxoplasma gondii schizonts (types B to E) and gamonts in the intestines of cats fed bradyzoites. International Journal for Parasitology 35, 193206.CrossRefGoogle Scholar
Stotish, R. L., Wang, C. C. and Meyenhofer, M. (1978). Structure and composition of the oocyst wall of Eimeria tenella. Journal of Parasitology 64, 10741081.CrossRefGoogle ScholarPubMed
Straschil, U., Talman, A. M., Ferguson, D. J. P., Bunting, K. A., Xu, Z., Bailes, E., Sinden, R. E., Holder, A. A., Smith, E. F., Coates, J. C. and Tewari, R. (2010). The armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLoS ONE 5, e12901.CrossRefGoogle ScholarPubMed
Sutton, C. A., Shirley, M. W. and McDonald, V. (1986). Genetic recombination of markers for precocious development, arprinocid resistance, and isoenzymes of glucose phosphate isomerase in Eimeria acervulina. Journal of Parasitology 72, 965967.CrossRefGoogle ScholarPubMed
Talman, A. M., Lacroix, C., Marques, S. R., Blagborough, A. M., Carzaniga, R., Menard, R. and Sinden, R. E. (2011). PbGEST mediates malaria transmission to both mosquito and vertebrate host. Molecular Microbiology 82, 462474.CrossRefGoogle ScholarPubMed
Templeton, T. J., Lancto, C. A., Vigdorovich, V., Liu, C., London, N. R., Hadsall, K. Z. and Abrahamsen, M. S. (2004). The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infection and Immunity 72, 980987.CrossRefGoogle Scholar
Tewari, R., Dorin, D., Moon, R., Doerig, C. and Billker, O. (2005). An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Molecular Microbiology 58, 12531263.CrossRefGoogle Scholar
Tewari, R., Straschil, U., Bateman, A., Bohme, U., Cherevach, I., Gong, P., Pain, A. and Billker, O. (2010). The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host and Microbe 8, 377387.CrossRefGoogle ScholarPubMed
Tilmann, C. and Capel, B. (2002). Cellular and molecular pathways regulating mammalian sex determination. Recent Progress in Hormone Research 57, 118.CrossRefGoogle ScholarPubMed
Torres, J. A., Rodriguez, M. H., Rodriguez, M. C. and de la Cruz Hernandez-Hernandez, F. (2005). Plasmodium berghei: effect of protease inhibitors during gametogenesis and early zygote development. Experimental Parasitology 111, 255259.CrossRefGoogle ScholarPubMed
van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A., Dodemont, H. J., Stunnenberg, H. G., van Gemert, G. J., Sauerwein, R. W. and Eling, W. (2001). A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153164.CrossRefGoogle ScholarPubMed
van Schaijk, B. C., van Dijk, M. R., van de Vegte-Bolmer, M., van Gemert, G. J., van Dooren, M. W., Eksi, S., Roeffen, W. F., Janse, C. J., Waters, A. P. and Sauerwein, R. W. (2006). Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Molecular and Biochemical Parasitology 149, 216222.CrossRefGoogle ScholarPubMed
Vetterling, J. M., Pacheco, N. D. and Fayer, R. (1973). Fine structure of gametogony and oocyst formation in Sarcocystis sp. in cell culture. Journal of Protozoology 20, 613621.CrossRefGoogle ScholarPubMed
Waite, J. H. and Rice-Ficht, A. C. (1987). Presclerotized eggshell protein from the liver fluke Fasciola hepatica. Biochemistry 26, 78197825.CrossRefGoogle ScholarPubMed
Walker, R. A., Slapetova, I., Slapeta, J., Miller, C. M. and Smith, N. C. (2010). The glycosylation pathway of Eimeria tenella is upregulated during gametocyte development and may play a role in oocyst wall formation. Eukaryotic Cell 9, 127135.CrossRefGoogle ScholarPubMed
Wallach, M. G., Smith, N. C., Petracca, M., Miller, C. M. D., Eckert, J. and Braun, R. (1995). Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine 13, 347354.CrossRefGoogle Scholar
Wallach, M. G., Ashash, U., Michael, A. and Smith, N. C. (2008). Field application of a subunit vaccine against an enteric protozoan disease. PLoS ONE 3, e3948.CrossRefGoogle ScholarPubMed
Walliker, D., Carter, R. and Morgan, S. (1971). Genetic recombination in malaria parasites. Nature 232, 561562.CrossRefGoogle ScholarPubMed
Walliker, D., Carter, R. and Sanderson, A. (1975). Genetic studies on Plasmodium chabaudi: recombination between enzyme markers. Parasitology 70, 1924.CrossRefGoogle ScholarPubMed
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., Corcoran, L. M., Burkot, T. R. and Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 16611666.CrossRefGoogle ScholarPubMed
Wass, M. N., Stanway, R., Blagborough, A. M., Lal, K., Prieto, J. H., Raine, D., Sternberg, M. J. E., Talman, A. M., Tomley, F., Yates, J. III and Sinden, R. E. (2012). Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology 139, 11311145.CrossRefGoogle ScholarPubMed
West, S. A., Smith, T. G. and Read, A. F. (2000). Sex allocation and population structure in apicomplexan (protozoa) parasites. Proceedings of the Royal Society of London B: Biological Sciences 267, 257263.CrossRefGoogle ScholarPubMed
Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, Y., Carucci, D. J., Baker, D. A. and Winzeler, E. A. (2005). The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology 143, 6779.CrossRefGoogle ScholarPubMed
Yuda, M., Iwanaga, S., Shigenobu, S., Mair, G. R., Janse, C. J., Waters, A. P., Kato, T. and Kaneko, I. (2009). Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Molecular Microbiology 71, 14021414.CrossRefGoogle ScholarPubMed