Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:18:52.770Z Has data issue: false hasContentIssue false

Spatial variation in helminth community structure in the red-legged partridge (Alectoris rufa L.): effects of definitive host density

Published online by Cambridge University Press:  10 June 2004

C. CALVETE
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), P.O. Box 535, E-13080 Ciudad Real, Spain
J. A. BLANCO-AGUIAR
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), P.O. Box 535, E-13080 Ciudad Real, Spain
E. VIRGÓS
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), P.O. Box 535, E-13080 Ciudad Real, Spain Present address: Departamento de Matemáticas y Física Aplicadas y Ciencias de la Naturaleza, Universidad Rey Juan Carlos I. C/ Tulipan s/n E-28933 Madrid, Spain.
S. CABEZAS-DÍAZ
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), P.O. Box 535, E-13080 Ciudad Real, Spain
R. VILLAFUERTE
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), P.O. Box 535, E-13080 Ciudad Real, Spain

Abstract

Parasite community ecology has recently focused on understanding the forces structuring these communities. There are few surveys, however, designed to study the spatial repeatability and predictability of parasite communities at the local scale in one host. The purpose of our study was to address the relationship between infracommunity and component community richness, and to describe spatial variations on the local scale, of helminth parasite communities in an avian host, the red-legged partridge (Alectoris rufa). We sampled 235 wild partridges from 8 separate localities, with different partridge population densities, in the Ciudad Real and Toledo provinces of central Spain, and we determined their overall and intestinal helminth species. We found that habitat variables (mean temperature and land use) were not significantly associated with any component community. The partridge population abundance index was directly correlated with the prevalence and mean intensity of infection but not with component community species richness. There was a curvilinear relationship between infracommunity and component community species richness, as well as negative interspecific associations, for the helminth species assemblage parasitizing the intestine. A nestedness/anti-nestedness pattern, considered as part of a continuum, was associated with prevalence, mean intensity and partridge population abundance index, but not with component community richness. Increases in the partridge population abundance index and the prevalence and mean intensity of infection were associated with increases in helminth community nestedness. Although negative interactions between helminth species could not be ruled out as forces structuring helminth communities, our results suggest that parasite community structure in the red-legged partridge was primarily determined by the extrinsic influence of parasite habitat heterogeneity and its amplification of the differing probabilities of colonization of parasite species.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABU-MADI, M. A., BEHNKE, J. M., LEWIS, J. W. & GILBERT, F. S. (2000). Seasonal and site specific variation in the component community structure of intestinal helminths in Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 74, 716.Google Scholar
BEHNKE, J. M., BARNARD, C. J., BAJER, A., BRAY, D., DINMORE, J., FRAKE, K., OSMOND, J., RACE, T. & SINSKI, E. (2001). Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401414.CrossRefGoogle Scholar
BLANCO-AGUIAR, J. A., VIRGÓS, E. & VILLAFUERTE, R. (2003). Perdiz Roja (Alectoris rufa). In Atlas de las aves reproductoras de España (ed. Martí, R. & Del Moral, J. C. ), pp. 212213. Dirección General de Conservación de la Naturaleza y Sociedad Española de Ornitología, Madrid.
BLEM, C. R. (1990). Avian energy storage. Current Ornithology 7, 59133.Google Scholar
BUSH, A. O., LAFFERTY, K. D., LOTZ, J. M. & SHOSTAK, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
CALVETE, C., ESTRADA, R., LUCIENTES, J., ESTRADA, A. & TELLETXEA, I. (2003). Correlates of helminth community in the red-legged partridge (Alectoris rufa L.) in Spain. Journal of Parasitology 89, 445451.CrossRefGoogle Scholar
CARNEY, J. P. & DICK, T. A. (2000). Helminth communities of yellow perch (Perca flavescens (Mitchill)): determinants of pattern. Canadian Journal of Zoology 78, 538555.CrossRefGoogle Scholar
DAVIDSON, W. R., KELLOGG, F. E., DOSTER, G. L. & MOORE, C. T. (1991). Ecology of helminth parasitism in bobwhites from northern Florida. Journal of Wildlife Diseases 27, 185205.CrossRefGoogle Scholar
DUARTE, J. & VARGAS, J. M. (2001). Survey methods for red-legged partridge (Alectoris rufa) in olive groves in Southern Spain. Game and Wildlife Science 18, 141156.Google Scholar
FELIU, C., RENAUD, F., CATZEFLIS, F., HUGOT, J., DURAND, P. & MORAND, S. (1997). A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453466.CrossRefGoogle Scholar
FORBES, M. R., ALISAUSKAS, R. T., McLAUGHLIN, J. D. & CUDDINGTON, K. M. (1999). Explaining co-occurrence among helminth species of lesser snow geese (Chen caerulescens) during their winter and spring migration. Oecologia 120, 613620.CrossRefGoogle Scholar
GUÉGAN, J. F. & HUGUENY, B. A. (1994). A nested parasite species subset pattern in tropical fish: host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.CrossRefGoogle Scholar
HALMETOJA, A., VALTONEN, E. T. & KOSKENNIEMI, E. (2000). Perch (Perca fluviatillis L.) parasites reflect ecosystem conditions: a comparison of a natural lake and two acidic reservoirs in Finland. International Journal for Parasitology 30, 14371444.Google Scholar
HARTVIGSEN, R. & HALVORSEN, O. (1994). Spatial patterns in the abundance and distribution of parasites of freshwater fish. Parasitology Today 10, 2831.CrossRefGoogle Scholar
HAUKISALMI, V. & HENTTONEN, H. (1999). Determinants of helminth aggregation in natural host populations: individual differences or spatial heterogeneity? Ecography 20, 629636.Google Scholar
HUGUENY, B. & GUÉGAN, J. F. (1997). Community nestedness and the proper way to assess statistical significance by Monte-Carlo tests: some comments on Worthen and Rohde's (1996) paper. Oikos 80, 572574.CrossRefGoogle Scholar
HULBERT, I. A. R. & BOAG, B. (2001). The potential role of habitat on intestinal helminths of mountain hares, Lepus timidus. Journal of Helminthology 75, 345349.Google Scholar
JANOVY, J., CLOPTON, R. E., CLOPTON, D. A., SNYDER, S. D., EFTING, A. & KREBS, L. (1995). Species density distributions as null models for ecologically significant interactions of parasite species in an assemblage. Ecological Modelling 77, 189196.CrossRefGoogle Scholar
JOHNSON, D. H., KRAPU, G. L., REINECKE, K. J. & JORDE, D. G. (1985). An evaluation of condition indices for birds. Journal of Wildlife Management 46, 569575.CrossRefGoogle Scholar
KENNEDY, C. R. & GUÉGAN, F. F. (1996). The number of niches in intestinal helminth communities of Anguilla anguilla: Are there enough spaces for parasites? Parasitology 113, 293302.Google Scholar
LANDE, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 513.CrossRefGoogle Scholar
LEGENDRE, P., LAPOINTE, F. J. & CASGRAIN, P. (1994). Modeling brain evolution from behaviour a permutational regression approach. Evolution 48, 14871499.CrossRefGoogle Scholar
LITTLE, R. C., MILLIKEN, G. A., STROUP, W. W. & WOLFINGER, R. D. (1996). SAS System for Mixed Models. SAS Institute, Cary, USA.
LOTZ, J. M. & FONT, W. F. (1994). Excess positive associations in communities of intestinal helminths of bats: a refined null hypothesis and a test of the facilitation hypothesis. Journal of Parasitology 80, 398413.CrossRefGoogle Scholar
MAGURRAN, A. E. (1988). Ecological Diversity and its Measurement. Croom Helm Ltd, London.CrossRef
MORRISON, D. A. (2002). How to improve statistical analysis in parasitology research publications. International Journal for Parasitology 32, 10651070.CrossRefGoogle Scholar
PATTERSON, B. D. & ATMAR, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipielagos. Biological Journal of the Linnean Society 28, 6582.CrossRefGoogle Scholar
POULIN, R. (1996). Richness, nestedness, and randomness in parasite infracommunity structure. Oecologia 105, 545551.CrossRefGoogle Scholar
POULIN, R. (1997). Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics 28, 341358.CrossRefGoogle Scholar
POULIN, R. (2001). Interactions between species and the structure of helminth communities. Parasitology 122 (Suppl.), S3S11.CrossRefGoogle Scholar
POULIN, R. & GUÉGAN, J. F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology 30, 11471152.CrossRefGoogle Scholar
POULIN, R. & MORAND, S. (1999). Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle Scholar
POULIN, R. & VALTONEN, E. T. (2001). Nested assemblages resulting from host size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology 31, 11941204.CrossRefGoogle Scholar
POULIN, R. & VALTONEN, E. T. (2002). The predictability of helminth community structure in space: a comparison of fish populations from adjacent lakes. International Journal for Parasitology 32, 12351243.CrossRefGoogle Scholar
RICCI, J. C. (1989). Une méthode de recensement des perdrix rouges (Alectoris rufa L.) au printemps par indice kilométrique d'abondance (Ikaprv) dans le midi-méditerranéen. Gibier Faune Sauvage 6, 145158.Google Scholar
ROHDE, K. (1998). Is there a fixed number of niches for endoparasites of fish? International Journal for Parasitology 28, 18611865.Google Scholar
ROHDE, K., WORTHEN, W. B., HEAP, M., HUGUENY, B. & GUÉGAN, J. F. (1998). Nestedness in assemblages of metazoan ecto- and endoparasites of marine fish. International Journal for Parasitology 28, 543549.CrossRefGoogle Scholar
SEOANE, J., VIÑUELA, J., DÍAZ-DELGADO, R. & BUSTAMANTE, J. (2003). The effects of land use and climate on red kite distribution in the Iberian peninsula. Biological Conservation 111, 401414.CrossRefGoogle Scholar
SRIVASTAVA, D. S. (1999). Using local-regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology 68, 116.CrossRefGoogle Scholar
VALTONEN, E. T., HOLMES, J. C. & KOSKIVAARA, M. (1997). Eutrophication, pollution, and fragmentation: effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Science 54, 572585.CrossRefGoogle Scholar
VICKERY, W. L. & POULIN, R. (2002). Can helminth community patterns be amplified when transferred by predation from intermediate to definitive hosts? Journal of Parasitology 88, 650656.Google Scholar
WORTHEN, W. B. & ROHDE, K. (1996). Nested subset analyses of colonization-dominated communities: metazoan ectoparasites of marine fishes. Oikos 75, 471478.CrossRefGoogle Scholar