Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:23:57.297Z Has data issue: false hasContentIssue false

Species or local environment, what determines the infection of rodents by Toxoplasma gondii?

Published online by Cambridge University Press:  18 October 2013

CÉCILE GOTTELAND*
Affiliation:
Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, UFR de Médecine, SFR Cap Santé FED 4231, 51 rue Cognacq-Jay, F-51096 Reims, France Université Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie, 43 Bd du 11 novembre 1918, 69622, Villeurbanne, France
YANNICK CHAVAL
Affiliation:
INRA, UMR CBGP (INRA⁄IRD⁄Cirad⁄Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez Cedex, France
ISABELLE VILLENA
Affiliation:
Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, UFR de Médecine, SFR Cap Santé FED 4231, 51 rue Cognacq-Jay, F-51096 Reims, France
MAXIME GALAN
Affiliation:
INRA, UMR CBGP (INRA⁄IRD⁄Cirad⁄Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez Cedex, France
RÉGINE GEERS
Affiliation:
Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, UFR de Médecine, SFR Cap Santé FED 4231, 51 rue Cognacq-Jay, F-51096 Reims, France
DOMINIQUE AUBERT
Affiliation:
Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, UFR de Médecine, SFR Cap Santé FED 4231, 51 rue Cognacq-Jay, F-51096 Reims, France
MARIE-LAZARINE POULLE
Affiliation:
Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, UFR de Médecine, SFR Cap Santé FED 4231, 51 rue Cognacq-Jay, F-51096 Reims, France Université de Reims Champagne-Ardenne, CERFE, 08240 Boult-aux-bois, France
NATHALIE CHARBONNEL
Affiliation:
INRA, UMR CBGP (INRA⁄IRD⁄Cirad⁄Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez Cedex, France
EMMANUELLE GILOT-FROMONT
Affiliation:
Université Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie, 43 Bd du 11 novembre 1918, 69622, Villeurbanne, France Université de Lyon, VetAgro Sup, 1 Avenue Bourgelat, F-69280, Marcy l'Etoile, France
*
* Corresponding author. UMR-CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, Bâtiment Mendel, 1er étage, 43 Bd du 11 novembre 1918, 69622, Villeurbanne, France. E-mail: cecile.gotteland@univ-lyon1.fr

Summary

Toxoplasmosis is largely present in rural areas but its spatial distribution in this environment remains poorly known. In particular, it is unclear if areas of high density of cats, the only hosts excreting Toxoplasma gondii, constitute foci of high prevalence. To improve our understanding of the spatial distribution of T. gondii in rural areas, we performed a serological survey in rodents from two villages in France. We trapped 710 rodents including commensal rats and meadow or forest voles and mice. The presence of T. gondii was examined using PCR, mice inoculation and modified agglutination test for antibodies (MAT). We conducted multivariate and discriminant analyses to identify biological, ecological or spatial variables that could explain T. gondii serology in rodents. We then used a logistic regression to assess the relative influence of each explanatory variable. Overall seroprevalence was 4·1%. Commensal-rats were more infected (12·5%) than non-commensal species (3·7%). However, the major determinant of the risk of infection was the distance to the nearest farm (OR = 0·75 for 100 m), which explained the risk in all species or non-commensal species only. We contrast the role of species characteristics and that of the local environment, and discuss the risk of environmental contamination for humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, E., Poulle, M. L., Lemoine, M., Villena, I., Aubert, D. and Gilot-Fromont, E. (2007 a). Prevalence of Toxoplasma gondii in small mammals from the Ardennes region, France. Folia Parasitologica 54, 313314.Google Scholar
Afonso, E., Thulliez, P., Pontier, D. and Gilot-Fromont, E. (2007 b). Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology 134, 19631971.CrossRefGoogle Scholar
Ahmad, M. S., Maqbool, A., Mahmood-Ul-Hassan, M., Mushtaq-Ul-Hassan, M. and Anjum, A. A. (2012). Prevalence of Toxoplasma gondii antibodies in human beings and commensal rodents trapped from Lahore, Pakistan. Journal of Animal and Plant Sciences 22, 5153.Google Scholar
Antoniou, M., Psaroulaki, A., Toumazos, P., Mazeris, A., Ioannou, I., Papaprodromou, M., Georgiou, K., Hristofi, N., Patsias, A., Loucaides, F., Moschandreas, J., Tsatsaris, A. and Tselentis, Y. (2010). Rats as indicators of the presence and dispersal of pathogens in Cyprus: ectoparasites, parasitic helminths, enteric bacteria, and encephalomyocarditis virus. Vector Borne Zoonotic Diseases 10, 867873.Google Scholar
Aplin, K. P., Brown, P. R., Jacob, J., Krebs, C. J. and Singleton, G. R. (2003). Field Methods for Rodent Studies in Asia and the Indo-Pacific. ACIAR Monograph 100, p. 223, Australian Centre for International Agricultural Research, Canberra.Google Scholar
Araujo, J. B., da Silva, A. V., Rosa, R. C., Mattei, R. J., da Silva, R. C., Richini-Pereira, V. B. and Langoni, H. (2010). Isolation and multilocus genotyping of Toxoplasma gondii in seronegative rodents in Brazil. Veterinary Parasitology 174, 328331.Google Scholar
Barnett, S. A. and Spencer, M. M. (1951). Feeding, social behaviour and interspecific competition in wild rats. Behaviour 3, 229242.Google Scholar
Bartoń, K. (2009). MuMIn: Multi-Model Inference. R package, version 0.12.2. http://r-forge.r-project.org/pro-jects/mumin/.Google Scholar
Berdoy, M., Webster, J. P. and Macdonald, D. W. (2000). Fatal attraction in rats infected with Toxoplasma gondii . Proceedings of the Royal Society B–Biological Sciences 267, 15911594.Google Scholar
Boyer, K., Hill, D., Mui, E., Wroblewski, K., Karrison, T., Dubey, J. P., Sautter, M., Noble, A. G., Withers, S., Swisher, C., Heydemann, P., Hosten, T., Babiarz, J., Lee, D., Meier, P. and McLeod, R. (2011). Toxoplasmosis Study Group. Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America. Clinical Infectious Diseases 53, 10811089.Google Scholar
Burnham, K. and Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information- Theoretic Approach, 2nd Edn. Springer-Verlag, New York, NY, USA.Google Scholar
Burnham, K. P., Anderson, D. R. and Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65, 2335.Google Scholar
Chessel, D., Dufour, A. B. and Thioulouse, J. (2004). The ade4 package-I- One-table methods. R News 4, 510.Google Scholar
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or Fiducial limits illustrated in the case of the binomial. Biometrika 26, 404413.Google Scholar
Dabritz, H. A., Miller, M. A., Gardner, I. A., Packham, A. E., Atwill, E. R. and Conrad, P. A. (2008). Risk factors for Toxoplasma gondii infection in wild rodents from central coastal California and a review of T. gondii prevalence in rodents. Journal of Parasitology 94, 675683.CrossRefGoogle Scholar
De Thoisy, B., Demar, M., Aznar, C. and Carme, B. (2003). Ecologic correlates of Toxoplasma gondii exposure in free-ranging neotropical mammals. Journal of Wildlife Diseases 39, 456459.Google Scholar
Dubey, J. P. and Beattie, C. P. (1988). Toxoplasmosis of Animals and Man. CRC Press, Boca Raton, FL, USA.Google Scholar
Dubey, J. P. and Desmonts, G. (1987). Serological responses of equids fed Toxoplasma-gondii oocysts. Equine Veterinary Journal 19, 337339.CrossRefGoogle ScholarPubMed
Dubey, J. P., Weigel, R. M., Siegel, A. M., Thulliez, P., Kitron, U. D., Mitchell, M. A., Mannelli, A., Mateuspinilla, N. E., Shen, S. K., Kwok, O. C. H. and Todd, K. S. (1995). Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. Journal of Parasitology 81, 723729.Google Scholar
Dubey, J. P., Shen, S. K., Kwok, O. C. and Thulliez, P. (1997). Toxoplasmosis in rats (Rattus norvegicus): congenital transmission to first and second generation offspring and isolation of Toxoplasma gondii from seronegative rats. Parasitology 115, 914.Google Scholar
Dubey, J. P., Bhaiyat, M. I., Macpherson, C. N., de Allie, C., Chikweto, A., Kwok, O. C. and Sharma, R. N. (2006). Prevalence of Toxoplasma gondii in rats (Rattus norvegicus) in Grenada, West Indies. Journal of Parasitology 92, 11071108.Google Scholar
Ferreira, J. P., Leitao, I., Santos-Reis, M. and Revilla, E. (2011). Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970. doi: 10.1371/journal.pone.0025970.Google Scholar
Fuehrer, H. P., Bloschl, I., Siehs, C. and Hassl, A. (2010). Detection of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in the brains of common voles (Microtus arvalis) and water voles (Arvicola terrestris) by gene amplification techniques in western Austria (Vorarlberg). Parasitology Research 107, 469473.Google Scholar
Galan, M., Pagès, M. and Cosson, J. F. (2012). Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS ONE 7, e48374. doi: 10.1371/journal.pone.0048374.Google Scholar
Gauss, C. B., Almeria, S., Ortuno, A., Garcia, F. and Dubey, J. P. (2003). Seroprevalence of Toxoplasma gondii antibodies in domestic cats from Barcelona, Spain. Journal of Parasitology 89, 10671068.Google Scholar
Gilot-Fromont, E., Lélu, M., Dardé, M. L., Richomme, C., Aubert, D., Afonso, E., Mercier, A., Gotteland, C. and Villena, I. (2012). The life cycle of Toxoplasma gondii in the natural environment. In Toxoplasmosis – Recent Advances (ed. Djurkovic-Djakovic, O.), pp. 136. InTech Open Access. doi: 10.5772/2845.Google Scholar
Hejlicek, K., Literak, I. and Nezval, J. (1997). Toxoplasmosis in wild mammals from the Czech Republic. Journal of Wildlife Diseases 33, 480485.Google Scholar
Hill, M. O. and Smith, A. J. E. (1976). Principal component analysis of taxonomic data with multistate discrete characters. Taxon 25, 249255.CrossRefGoogle Scholar
Hobbs, N. T. and Hilborn, R. (2006). Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecological Applications 16, 519.Google Scholar
Jackson, M. H. and Siim, J. C. (1986). Toxoplasmosis in a wild rodent population of central Scotland and a possible explanation of the mode of transmission. Journal of Zoology 209, 549557.Google Scholar
Jeon, S. H. and Yong, T. S. (2000). Serological observation of Toxoplasma gondii prevalence in Apodemus agrarius, a dominant species of field rodents in Korea. Yonsei Medical Journal 41, 491496.Google Scholar
Jittapalapong, S., Sarataphan, N., Maruyama, S., Hugot, J. P., Morand, S. and Herbreteau, V. (2011). Toxoplasmosis in rodents: ecological survey and first evidences in Thailand. Vector Borne Zoonotic Diseases 11, 231237.CrossRefGoogle ScholarPubMed
Kijlstra, A., Meerburg, B., Cornelissen, J., De Craeye, S., Vereijken, P. and Jongert, E. (2008). The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs. Veterinary Parasitology 156, 183190.CrossRefGoogle ScholarPubMed
Kuticic, V., Wikerhauser, T. and Gracner, D. (2005). A survey of rats and mice for latent toxoplasmosis in Croatia: a case report. Veterinarni Medicina 50, 513514.Google Scholar
Lehmann, T., Graham, D. H., Dahl, E., Sreekumar, C., Launer, F., Corn, J. L., Gamble, H. R. and Dubey, J. P. (2003). Transmission dynamics of Toxoplasma gondii on a pig farm. Infection . Genetics and Evolution 3, 135141.Google Scholar
Lélu, M., Gilot-Fromont, E., Aubert, D., Richaume, A., Afonso, E., Dupuis, E., Gotteland, C., Marnef, F., Poulle, M. L., Dumetre, A., Thulliez, P., Dardé, M. L. and Villena, I. (2011). Development of a sensitive method for Toxoplasma gondii oocyst extraction in soil. Veterinary Parasitology 183, 5967.CrossRefGoogle ScholarPubMed
Li, Z., Zhao, Z. -J., Zhu, X. -Q., Ren, Q. -S., Nie, F. -F., Gao, J. -M., Gao, X. -J., Yang, T. -B., Zhou, W. -L., Shen, J. -L., Wang, Y., Lu, F. -L., Chen, X. -G., Hide, G., Ayala, F. J. and Lun, Z. -R. (2012). Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection. PLoS ONE 7, e35834.Google Scholar
Lim, A., Kumar, V., Hari Dass, S. A. and Vyas, A. (2013). Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Molecular Ecology 22, 102110.Google Scholar
Marshall, P. A., Hughes, J. M., Williams, R. H., Smith, J. E., Murphy, R. G. and Hide, G. (2004). Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus . Parasitology 128, 3942.Google Scholar
Meerburg, B. G., De Craeye, S., Dierick, K. and Kijlstra, A. (2012). Neospora caninum and Toxoplasma gondii in brain tissue of feral rodents and insectivores caught on farms in the Netherlands. Veterinary Parasitology 184, 317320.Google Scholar
Mercier, A., Garba, M., Bonnanau, H., Kane, M., Rossi, J. P., Dardé, M. L. and Dobigny, G. (2013). Toxoplasmosis seroprevalence in urban rodents: a survey in Niamey, Niger. Memórias do Instituto Oswaldo Cruz 108, 399407.CrossRefGoogle ScholarPubMed
Michaux, J. R., Kinet, S., Filippucci, M. G., Libois, R., Besnard, A. and Catzeflis, F. (2001). Molecular identification of three sympatric species of wood mice (Apodemus sylvaticus, A. flavicollis, A. alpicola) in western Europe (Muridae: Rodentia). Molecular Ecology Notes 1, 260263.Google Scholar
Mosallanejad, B., Avizeh, R., Razi Jalali, M. H. and Hamidinejat, H. (2012). Seroprevalence of Toxoplasma gondii among wild rats (Rattus rattus) in Ahvaz District, southwestern Iran. Jundishapur Journal of Microbiology 5, 332335. doi: 10.5812/kowsar.20083645.2373.Google Scholar
Murphy, R. G., Williams, R. H., Hughes, J. M., Hide, G., Ford, N. J. and Oldbury, D. J. (2008). The urban house mouse (Mus domesticus) as a reservoir of infection for the human parasite Toxoplasma gondii: an unrecognised public health issue? International Journal of Environmental Health Research 18, 177185.Google Scholar
Owen, M. R. and Trees, A. J. (1998). Vertical transmission of Toxoplasma gondii from chronically infected house (Mus musculus) and field (Apodemus sylvaticus) mice determined by polymerase chain reaction. Parasitology 116, 299304.CrossRefGoogle ScholarPubMed
R Development Core Team (2012). A Language and Environment for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org/.Google Scholar
Reischl, U., Bretagne, S., Kruger, D., Ernault, P. and Costa, J. M. (2003). Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infectious Diseases 3, 7.Google Scholar
Reperant, L. A., Hegglin, D., Tanner, I., Fischer, C. and Deplazes, P. (2009). Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329337.Google Scholar
Ruiz, A. and Frenkel, J. K. (1980). Intermediate and transport hosts of Toxoplasma gondii in Costa Rica. American Journal of Tropical Medicine and Hygiene 29, 11611166.Google Scholar
Salibay, C. C. and Claveria, F. G. (2005). Serologic detection of Toxoplasma gondii infection in Rattus spp. collected from three different sites in Dasmarinas, Cavite, Philippines. Southeast Asian Journal of Tropical Medicine and Public Health 36(Suppl. 4), 4649.Google ScholarPubMed
Smith, K. E., Zimmerman, J. J., Patton, S., Beran, G. W. and Hill, H. T. (1992). The epidemiology of toxoplasmosis on Iowa swine farms with an emphasis on the roles of free-living mammals. Veterinary Parasitology 42, 199211.Google Scholar
Thomasson, D., Wright, E. A., Hughes, J. M., Dodd, N. S., Cox, A. P., Boyce, K., Gerwash, O., Abushahma, M., Lun, Z. R., Murphy, R. G., Rogan, M. T. and Hide, G. (2011). Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats. Parasitology 138, 11171123.Google Scholar
Villena, I., Aubert, D., Gomis, P., Ferte, H., Inglard, J. C., Denis-Bisiaux, H., Dondon, J. M., Pisano, E., Ortis, N. and Pinon, J. M. (2004). Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Applied and Environmental Microbiology 70, 40354039.CrossRefGoogle ScholarPubMed
Vujanic, M., Ivovic, V., Kataranovski, M., Nikolic, A., Bobic, B., Klun, I., Villena, I., Kataranovski, D. and Djurkovic-Djakovic, O. (2010). Toxoplasmosis in naturally infected rodents in Belgrade, Serbia. Vector Borne Zoonotic Diseases 11, 12091211.Google Scholar
Vyas, A. (2013). Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii . Journal of Experimental Biology 216, 120126.Google Scholar
Weigel, R. M., Dubey, J. P., Siegel, A. M., Kitron, U. D., Mannelli, A., Mitchell, M. A., Mateuspinilla, N. E., Thulliez, P., Shen, S. K., Kwok, O. C. H. and Todd, K. S. (1995). Risk-factors for transmission of Toxoplasma gondii on swine farms in Illinois. Journal of Parasitology 81, 736741.Google Scholar
Welch, N. E. and MacMahon, J. A. (2005). Identifying habitat variables important to the rare Columbia spotted frog in Utah (USA): an information-theoretic approach. Conservation Biology 19, 473481.Google Scholar
Yin, C. C., He, Y., Zhou, D. H., Yan, C., He, X. H., Wu, S. M., Zhou, Y., Yuan, Z. G., Lin, R. Q. and Zhu, X. Q. (2010). Seroprevalence of Toxoplasma gondii in rats in southern China. Journal of Parasitology 96, 12331234.Google Scholar
Ziporyn, T. and McClintock, M. K. (1991). Passing as an indicator of social-dominance among female wild and domestic Norway rats. Behaviour 118, 2641.Google Scholar