Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T06:54:10.123Z Has data issue: false hasContentIssue false

Studies on malaria in Papua New Guinea: comparison of the surface glycoproteins on red blood cells from infected and uninfected individuals

Published online by Cambridge University Press:  08 November 2011

R. J. Howard
Affiliation:
Laboratory of Immunoparasitology, The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
G. V. Brown
Affiliation:
Laboratory of Immunoparasitology, The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
P. M. Smith
Affiliation:
Laboratory of Immunoparasitology, The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
G. F. Mitchell
Affiliation:
Laboratory of Immunoparasitology, The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
J. D. Stace
Affiliation:
Madang General Hospital, Madang, Papua New Guinea
M. P. Alpers
Affiliation:
Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
M. Wember
Affiliation:
Biochemisches Institut, Christian-Albrechts Universität, Kiel, West Germany
R. Schauer
Affiliation:
Biochemisches Institut, Christian-Albrechts Universität, Kiel, West Germany

Summary

The levels of erythrocyte membrane sialic acid from 17 patients with Plasmodium falciparum malaria and 1 with Plasmodium vivax malaria, in Papua New Guinea, have been compared with 9 uninfected controls. The amounts of radioactivity incorporated into the major erythrocyte glycoproteins by the periodate/NaB3H4 or galactose oxidase plus neuraminidase/NaB3H4 methods were unchanged by malaria infection. The electrophoretic mobilities of these proteins also were unaffected. Several new glycoprotein bands with molecular weights (mol. wt) of 160000, 89000, 46000, 42000 and 33000 Daltons were labelled on the surface of erythrocytes from infected individuals; however, none of these bands appeared in all malarious samples. Sialic acid levels on the erythrocyte membrane were also measured by exhaustive neuraminidase treatment and quantitative assay of released sialic acid. The amount of sialic acid was raised in 1 infected individual, within the normal range for Europeans in 4 others, and below this range with 3 patients. Apparently, extensive removal or modification of sialic acid on the surface of uninfected erythrocytes does not occur in human malaria, in contrast to the results obtained in earlier studies with the lethal murine malarias.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aminopf, D., Bell, W. C., Fulton, I. & Inoerbrigsten, N. (1976). Effect of sialidase on the viability of erythrocytes in circulation. American Journal of Hematology 1, 419–32.Google Scholar
Barrett-Connor, E. (1967). Plasmodium vivax malaria and Coombs positive anaemia. American Journal of Tropical Medicine and Hygiene 16, 699703.Google Scholar
Bell, S. (1963). Anaemia and parasitism in man. Proceedings of the Nutrition Society 22, 18.Google Scholar
Blumenfeld, O. O., Gallop, P. M. & Liao, T-H. (1972). Modification and introduction of a specific radioactive label into the erythrocyte membrane sialoglycoproteins. Biochemical and Biophysical Research Communications 48, 242–51.CrossRefGoogle ScholarPubMed
Bonner, W. M. & Laskey, R. A. (1974). A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46, 83–8.CrossRefGoogle ScholarPubMed
Dodge, J. T., Mitchell, C. & Hanahan, D. J. (1963). The preparation and chemical characteristics of haemoglobin-free ghosts of human erythrocytes. Archives of Biochemistry and Biophysics 100, 119–30.CrossRefGoogle Scholar
Durocher, J. R., Payne, R. C. & Conrad, M. E. (1975). Role of sialic acid in erythrocyte survival. Blood 45, 1120.Google Scholar
Fairbanks, G., Steck, T. L. & Wallach, D. F. H. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606–17.CrossRefGoogle ScholarPubMed
Gahmberg, C. G. (1976). External labelling of human erythrocyte glycoproteins. Studies with galactose oxidase and fluorography. Journal of Biological Chemistry 251, 510–15.Google Scholar
Gahmberg, C. G. & Andersson, L. C. (1977). Selective radioactive labelling of cell surface sialoglycoproteins by periodate-tritiated borohydride. Journal of Biological Chemistry 252, 5888–94.CrossRefGoogle ScholarPubMed
Gahmberg, C. G. & Hakomori, S. (1973). External labelling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. Journal of Biological Chemistry 248, 4311–17.CrossRefGoogle ScholarPubMed
Gahmberg, C. G., Myllyla, G., Leikola, J., Pirkola, A. & Nordling, S. (1976). Absence of the major sialoglycoprotein in the membrane of human En(a) erythrocytes and increased glycosylation of Band 3. Journal of Biological Chemistry 251, 6108–16.CrossRefGoogle ScholarPubMed
Gattegno, L., Bladier, D. & Cornillot, P. (1974). The role of sialic acid in the determination of the survival of rabbit, erythrocytes in the circulation. Carbohydrate Research 34, 361–9.Google Scholar
Gattegno, L., Bladier, D. & Cornillot, P. (1975). Ageing in vivo and neuraminidase treatment of rabbit erythrocytes: influence on half life as assessed by 51Cr labelling. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 356, 391–7.CrossRefGoogle Scholar
Hill, G. J., Knight, V. & Jeffery, G. M. (1964). Thrombocytopenia and vivax malaria. Lancet i, 240–1.CrossRefGoogle Scholar
Howard, R. J. & Day, K. P. (1980). Modification of sialic acid on red cells from malaria-infected blood: a possible explanation for anaemia induced by malaria. Experimental Parasitology 51, 95103.CrossRefGoogle Scholar
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1979). Identification of differences between the surface proteins and glycoproteins of normal mouse (BALB/c) and human erythrocytes. Journal of Membrane Biology 49, 171–98.Google Scholar
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1980 a). Characterization of surface proteins and glycoproteins on red blood cells from mice infected with hemosporidia. II. Plasmodium berghei infections of BALB/c mice. Parasitology 81, 273–98.Google Scholar
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1980 b). Characterization of surface proteins and glycoproteins on red blood cells from mice infected with hemosporidia. III. Plasmodium yoelii infections of BALB/c mice. Parasitology 81, 299314.Google Scholar
Jancik, J. & Schauer, R. (1974). Sialic acid-a determinant of the lifetime of rabbit erythrocytes. Hoppe-Seyler's Zeitschrift für physiologische Chemie 355, 395400.Google ScholarPubMed
Jancik, J., Schauer, R. & Streicher, H. J. (1975). Influence of membrane-bound N- acetylneuraminic acid on the survival of erythrocytes in man. Hoppe-Seyler's Zeitschrift für physiologische Chemie 356, 1329–31.Google Scholar
Jilly, P. & Nkrumah, F. K. (1965). A survey of anaemia in children in the Korle Bu Hospital, with special reference to malaria. Tropical Diseases Bulletin 62, 133–4.Google Scholar
Kariks, J. & Woodfield, D. G. (1972). Anaemia in Papua New Guinea: a review. Papua New Guinea Medical Journal 15, 1524.Google Scholar
Kay, M. M. B. (1975). Mechanism of removal of senescent cells by human macrophages. Proceedings of the National Academy of Sciences, USA 72, 3521–5.Google Scholar
Kreier, J., Shapiro, H., Dilley, D., Szilvassey, I. P. & Ristic, M. (1966). Autoimmune reactions in rats with Plasmodium berghei infection. Experimental Parasitology 19, 155–62.CrossRefGoogle ScholarPubMed
Kretschmar, W. (1961). Infektionsverlauf und Krankheitsbild bei mit Plasmodium berghei infizierten Mäusen des Stammes NMR. Zeitschrift für Tropenmedizin and Parasitologie 12, 346–68.Google Scholar
Laemmli, U. K. & Favre, M. (1973). Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology 80, 575–99.Google Scholar
Liao, T-H., Gallop, P. M. & Blumenfeld, O. O. (1973). Modification of the sialyl residues of sialoglycoprotein(s) of the human erythrocyte surface. Journal of Biological Chemistry 248, 8247–53.Google Scholar
Nakao, M., Nakayama, T. & Kankura, T. (1973). A new method for separation of human blood components. Nature New Biology 246, 94.Google Scholar
Ray, A. P. (1957). Haematological studies in simian malaria. II. Blood picture in monkeys during acute and chronic stages of P. cynomolgi infection. Indian Journal of Malariology 11, 369–88.Google Scholar
Rice, R. H. & Means, G. E. (1971). Radioactive labelling of proteins in vitro. Journal of Biological Chemistry 246, 831–2.Google Scholar
Rosenberg, E. B., Strickland, G. T., Yang, S-L. & Whalen, G. E. (1973). IgM antibodies to red cells and autoimmune anaemia in patients with malaria. American Journal of Tropical Medicine and Hygiene 22, 146–52.Google Scholar
Schauer, R., Corfield, A. P., Wember, M. & Danon, D. (1975). A micro-method for quantitative determination of acylneuraminic acids from erythrocyte membranes. Hoppe-Seyler's Zeitschrift für physiologische Chemie 356, 1727–32.Google Scholar
Schofield, F. D., Parkinson, A. D. & Kelly, A. (1964). Changes in haemoglobin values and hepatosplenomegaly produced by control of holoendemic malaria. British Medical Journal 5383, 587–91.CrossRefGoogle Scholar
Trigg, P. I., Hirst, S. I., Shakespeare, P. G. & Tappenden, L. (1977). Labelling of membrane glycoprotein in erythrocytes infected with Plasmodium knowlesi. Bulletin of the World Health Organization 55, 203–7.Google Scholar
Wallach, D. F. H. & Conley, M. (1977). Altered membrane proteins of monkey erythrocytes infected with simian malaria. Journal of Molecular Medicine 2, 119–36.Google Scholar
Woodfield, D. G. (1973). In The Diseases and Health Services of Papua New Guinea (ed. Bell, C.), pp. 259–63. Port Moresby: Department of Public Health.Google Scholar
Woodruff, A. W., Ansdell, V. E. & Pettitt, L. E. (1979). Cause of anaemia in malaria. Lancet i, 1055–7.Google Scholar
Zuckerman, A. (1966). Recent studies on factors involved in malarial anaemia. Military Medicine 131, 1201–16.CrossRefGoogle Scholar