Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T09:09:07.217Z Has data issue: false hasContentIssue false

Temporal variation of Mexiconema cichlasomae (Nematoda: Daniconematidae) in the Mayan cichlid fish Cichlasoma urophthalmus and its intermediate host Argulus yucatanus from a tropical coastal lagoon

Published online by Cambridge University Press:  06 November 2012

A. L. MAY-TEC*
Affiliation:
Departamento de Recursos del Mar, Cinvestav-IPN Unidad Mérida, Carretera antigua a Progreso km 6, Apdo. Postal 73 – Cordemex, 97310 Mérida, Yucatán, México
D. PECH
Affiliation:
Instituto EPOMEX, Universidad Autónoma de Campeche, A. Agustín Melgar S/N Col. Buena Vista, 24039 Campeche, Campeche, México
M. L. AGUIRRE-MACEDO
Affiliation:
Departamento de Recursos del Mar, Cinvestav-IPN Unidad Mérida, Carretera antigua a Progreso km 6, Apdo. Postal 73 – Cordemex, 97310 Mérida, Yucatán, México
J. W. LEWIS
Affiliation:
School of Biological Sciences, Royal Holloway University of London, UK
V. M. VIDAL-MARTÍNEZ
Affiliation:
Departamento de Recursos del Mar, Cinvestav-IPN Unidad Mérida, Carretera antigua a Progreso km 6, Apdo. Postal 73 – Cordemex, 97310 Mérida, Yucatán, México
*
*Corresponding author: Laboratorio de Parasitología, Departamento de Recursos del Mar, Cinvestav, Carretera antigua a Progreso km 6, Apdo. Postal 73 – Cordemex, 97310 Mérida, Yucatán, Mexico. Tel.: +52 999 942 9400. Fax: +52 999 981 23 34. E-mail: amayt@mda.cinvestav.mx

Summary

The aim of the present investigation was to determine whether temporal variation in environmental factors such as rainfall or temperature influence long-term fluctuations in the prevalence and mean abundance of the nematode Mexiconema cichlasomae in the cichlid fish Cichlasoma uropthalmus and its crustacean intermediate host, Argulus yucatanus. The study was undertaken in a tropical coastal lagoon in the Yucatan Peninsula (south-eastern Mexico) over an 8-year period. Variations in temperature, rainfall and monthly infection levels for both hosts were analysed using time series and cross-correlations to detect possible recurrent patterns. Infections of M. cichlasomae in A. yucatanus showed annual peaks, while in C. urophthalmus peaks were bi-annual. The latter appear to be related to the accumulation of several generations of this nematode in C. urophthalmus. Rainfall and temperature appear to be key environmental factors in influencing temporal variation in the infection of M. cichlasomae over periods longer than a year together with the accumulation of larval stages throughout time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abell, S., Gadeka, P., Pearceb, C. and Congdon, B. (2006). Seasonal resource availability and use by an endangered tropical mycophagous marsupial. Biological Conservation 132, 533540.CrossRefGoogle Scholar
Aguirre-Macedo, M. L., Vidal-Martínez, V. M. and Lafferty, K. D. (2011). Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon. International Journal for Parasitology 41, 14031408.CrossRefGoogle Scholar
Avenant-Oldewage, A., Swanepoel, J. H. and Knight, E. (1994). Histomorphology of the digestive tract of Chonopeltis australis (Crustacea: Branchiura). The South African Journal of Zoology 29, 7481.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Acunto, S., Bulleri, F. and Cinelli, F. (2000). Population ecology of the barnacle Chtliamalus stellatus in the northwest Mediterranean. Marine Ecological Progress Series 198, 157170.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on this own terms: Margolis et., al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle ScholarPubMed
Caspeta-Mandujano, J. M. and Mejía-Mojica, H. (2004). Seasonal dynamics of the ocurrence and maduration of Rhabdochona Canadensis in its definitive host, Notropics boucardi of the Chalma River, State of Morelos, México. Helminthologia 41, 121123.Google Scholar
Coley, P. D. and Aide, T.M. (1991). Comparisons of herbivory and plant defenses in temperate and tropical broad-leaved forest. In Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions (ed. Price, P. W., Lewinshom, T. M., Fernades, G. W. and Benson, W. W.), pp. 2549. Wiley and Sons, New York, USA.Google Scholar
Colón-González, F., Lake, I. and Bentham, G. (2011). Climate variability and dengue fever in warm and humid Mexico. The American Journal of Tropical Medicine and Hygiene 84, 757763.CrossRefGoogle ScholarPubMed
Des Clers, S. (1994). Sampling to Detect Infections and Estimate Prevalence in Aquaculture. Pisces Press, Stirling, Scotland.Google Scholar
Easterling, D. R., Evans, P., Groisman, T. R., Kunkel, K. E. and Ambenje, P. (2000). Observed variability and trends in extreme climate events: A brief review. American Meteorological Society 81, 417425.2.3.CO;2>CrossRefGoogle Scholar
Faunce, C. H., Patterson, H. M. and Lorenz, J. J. (2002). Age, growth, and mortality of the Mayan cichlid (Cichlasoma urophthalmus) from the southeastern Everglades. Fishery Bulletin 100, 4250.Google Scholar
Fiorillo, R. A. and Font, W. F. (1999). Seasonal dynamics and community structure of helminths of spotted sunfish, Lepomis miniatus (Osteichthyes: Centrarchidae) from an oligohaline estuary in southeastern Louisiana, U.S.A. Journal of the Helminthological Society of Washington 66, 101110.Google Scholar
Ghil, M. (2002). Natural climate variability. In Encyclopedia of Global Environmental Change (ed. MacCracken, M. C. and Perry, J. S.), pp. 544549. John Wiley & Sons, Ltd, Chichester, UK.Google Scholar
Githeko, A. K., Lindsay, S. W., Confalonieri, U. E. and Patz, J. A. (2000). Climate change and vector-borne diseases: a regional analysis. Bulletin of the World Health Organization, N. 78 (9).Google ScholarPubMed
Greenfield, D. W. and Thomerson, J. E. (1997). Fishes of the Continental Waters of Belize. University of Florida Press, Gainsville, FL, USA.Google Scholar
Hay, S. I., Myers, M. F., Burke, D. S., Vaughn, D. W., Endy, T., Ananda, N., Shanks, G. D., Snow, R. W. and Rogers, D. J. (2000). Etiology of interepidemic periods of mosquito-bornedisease. Proceedings of the National Academy of Sciences, USA 97, 93359339.CrossRefGoogle Scholar
Herrera-Silveira, J. A., Martín, M. B. and Díaz-Arce, V. (1999). Variaciones del fitoplanton en cuatro lagunas costeras del estado de Yucatán, México. Revista de Biología Tropical 47, 4756.Google Scholar
Hernández-Guevara, N. A., Pech, D. and Ardisson, P.-L. (2008). Temporal trends in benthic macrofauna composition in response to seasonal variation in a tropical coastal lagoon, Celestun, Gulf of Mexico. Marine and Freshwater Research 59, 772779.CrossRefGoogle Scholar
Hubálek, Z. (2005). North Atlantic weather oscillation and human infectious diseases in the Czech Republic, 1951–2003. European Journal of Epidemiology 20, 263270. doi 10.1007/s10654-004-6518-3.CrossRefGoogle ScholarPubMed
Hubálek, Z., Halouzka, J. and Juricová, Z. (2003). Longitudinal surveillance of the tick Ixodes ricinius for borreliae. Medical and Veterinary Entomology 17, 4651.CrossRefGoogle Scholar
Jiménez-García, M. I. and Vidal-Martínez, V. M. (2005). Temporal variation in the infection dynamics and maturation cycle of Oligogonotylus manteri (Digenea) in the cichlid fish, Cichlasoma urophthalmus, from Yucatán, México. Journal of Parasitology 91, 10081014.CrossRefGoogle ScholarPubMed
Kennedy, C. R. (1993). The dynamics of helminth communities in eels Anguilla anguilla in a small stream: long term changes in richness and structure. Parasitology 107, 7178.CrossRefGoogle Scholar
Kerans, B. L., Stevens, R. I. and Lemmon, J. C. (2005). Water temperature affects a host–parasite interaction: Tubifex tubifex and Myxobolus cerebralis. Journal of Aquatic Animal Health 17, 216221.CrossRefGoogle Scholar
Knipes, A. K. and Janovy, J. Jr. (2009). Community structure and seasonal dynamics of Dactylogyrus SPP. (Monogenea) on the fathead minnow (Pimephales promelas) from the Salt Valley Watershed, Lancaster County, Nebraska. Journal of Parasitology 95, 12951305.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Korallo-Vinarskaya, N. P., Vinarski, M. V., Shenbrot, G. I., Moullot, D. and Poulin, R. (2008). Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasitology 135, 229242. doi:10.1017/S003118200700368X.CrossRefGoogle ScholarPubMed
Lafferty, K. (2009). The ecology of climate change and infectious diseases. Ecology 90, 888900.CrossRefGoogle ScholarPubMed
Leong, T. S. (1986). Seasonal occurrence of metazoan parasites of Puntius binotaus in an irrigation canal, Pulau Pinang, Malaysia. Journal of Fish Biology 28, 916.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998). Numerical Ecology. 2nd English Edn. Elsevier Science BV, Amsterdam, The Netherlands.Google Scholar
Luque, J. L. and Poulin, R. (2008). Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology 72, 189204. doi: 10.1111/j.1095-8649.2007.01695.x.CrossRefGoogle Scholar
Mas-Coma, S., Valero, M. A. and Bargues, M. D. (2009). Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology 163, 264280. doi: 10.1016/j.vetpar.2009.03.024.CrossRefGoogle ScholarPubMed
Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Scientific and Technical Review of the Office International des Epizooties 27, 467484.CrossRefGoogle ScholarPubMed
Martin, L. B., Pless, M., Svoboda, J. and Wikelski, M. (2004). Immune activity in temperate and tropical house sparrows: A common-garden experiment. Ecology 85, 23232331.CrossRefGoogle Scholar
Martinez, J. and Merino, S. (2011). Host-parasite interactions under extreme climatic conditions. Current Zoology 57, 390405.CrossRefGoogle Scholar
Martínez-Palacios, C. A. (1987). Aspects of the biology of Cichlasoma urophthalmus (Günther) with particular reference to its culture in Celestún Lagoon, Yucatan, Mexico. Ph.D. Thesis, University of Stirling, Stirling, UK.Google Scholar
Martínez-Palacios, C. A. and Ross, L. G. (1988). The feeding ecology of the Central American cichlid Cichlasoma urophthalmus (Gunther). Journal of Fish Biology 33, 665670.CrossRefGoogle Scholar
Martinez-Palacios, C. A. and Ross, L. G. (1992). The reproductive biology and growth of the Central American cichlid Cichlasoma urophthalmus Günther. Journal Applied Ichthyology 8, 99109.CrossRefGoogle Scholar
May-Tec, A. L. (2007). Aspectos biológicos del ciclo de vida de Mexiconema cichlasomae (Nematoda: Daniconematidae) en Cichlasoma urophthalmus y en su hospedero intermediario Argulus sp. en Celestún, Yucatán. Tesis Licenciatura en Biología. Instituto Tecnológico Agropecuario N° 2.Google Scholar
Mejia-Madrid, H. H. and Aguirre-Macedo, M. L. (2011). Systematics of Mexiconema cichlasomae (Nematoda: Daniconematidae) Based on Sequences of SSU rDN. Journal of Parasitology 97, 160162. doi: 10.1645/GE-2569.1.CrossRefGoogle Scholar
Miller, R. R., Winckley, W. L. and Norris, M. S. (2005). Freshwater Fishes of Mexico. The University of Chigago Press, Chicago, ILL, USA.Google Scholar
Molnár, K. and Székely, C. (1998). Ocurrence of Skrajabillanid nematodes in fishes of Hungary and in the intermediate host. Argulus foliaceus L. Acta Veterinaria Hungarica 46, 451463.Google Scholar
Moravec, F. (1994). Parasitic nematodes of freshwater fishes of Europe. Academia and Kluwer Academy Publishers, Praha, Czech Republic.Google Scholar
Moravec, F. (2004). Some aspects of the taxonomy and biology of dracunculoid nematodes parasitic in fishes: A review. Folia Parasitologica 51, 113.CrossRefGoogle ScholarPubMed
Moravec, F. (2006). Dracunculoid and anguillicoloid nematodes parasitic in vertebrates. Academia, Praha, Czech Republic.Google Scholar
Moravec, F. (2007). Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: A review. Folia Parasitologica 54, 239257.CrossRefGoogle ScholarPubMed
Moravec, F., Magi, M. and Macchioni, F. (2008). Redescription of the gonadinfecting nematode Philometra saltatrix Ramachandran, 1973 (Philometridae) based on specimens from the type host Pomatomus saltatrix (L.) (Osteichthyes) from the Tuscan Sea, Italy. Folia Parasitologica 55, 219223.CrossRefGoogle Scholar
Moravec, F. and Salgado-Maldonado, G. (2007). A new species of Philometra (Nematoda, Philometridae) from the gonads of the rock hind Epinephelus adscensionis (Osteichthyes) from the southern Gulf of Mexico. Acta Parasitologica 52, 376381. doi: 10.2478/s11686-007-0044-x.CrossRefGoogle Scholar
Moravec, F., Vidal-Martinez, V. M. and Aguirre-Macedo, M. L. (1999). Branchiurids (Argulus) as intermediate host of the Daniconematid nematode Mexiconema cichlasomae. Folia Parasitologica 46, 79.Google Scholar
Moravec, F., Vidal-Martínez, V. M. and Salgado-Maldonado, G. (1992). Mexiconema cichlasomae gen, et sp. (Nematoda: Daniconematidae) from Cichlasoma spp. (Pices) from México. Folia Parasitologica 39, 3340.Google Scholar
Olden, J. D. and Neff, B. D. (2001). Cross-correlation bias in lag analysis of aquatic time series. Marine Biology 138, 10631070.CrossRefGoogle Scholar
Oliva, M. E., Barrios, I., Thatje, S. and Laudien, J. (2007). Changes in prevalence and intensity of infection of Profilicollis altmani (Perry, 1942) cystacanth (Acanthocephala) parasitizing the mole crab Emerita analoga (Stimpson, 1857): an El Niño cascade effect?. Helgoland Marine Research. doi: 10.1007/s10152-007-0082-7.Google Scholar
Parmesan, C. and Galbraith, H. (2004). Observed Ecological Impacts of Climate Change in North America. Pew Center on Global Climate Change, Arlington, VA, USA.Google Scholar
Patz, J. A., Campbell-Lendrum, D., Holloway, T. and Foley, J. A. (2005). Impact of regional climate change on human health. Nature, London 438, 310317. doi:10.1038/nature04188.CrossRefGoogle ScholarPubMed
Platt, D. and Denman, K. L. (1975). Spectral analysis in ecology. Annual Review of Ecology and Systematics 6, 189210.CrossRefGoogle Scholar
Pech, D., Ardisson, P. L. and Hernández-Guevara, N. A. (2007). Benthic community response to habitat variation: A case of study from a natural protected area, the Celestun coastal. Continental Shelf Research 27, 25232533. doi:10.1016/j.csr.2007.06.017.CrossRefGoogle Scholar
Pech, D., Aguirre-Macedo, M. L., Lewis, J. W. and Vidal-Martínez, V. M. (2010). Rainfall induces time-lagged changes in the proportion of tropical aquatic hosts infected with metazoan parasites. International Journal for Parasitology 40, 937944. doi:10.1016/j.ijpara.2010.01.009.CrossRefGoogle ScholarPubMed
Poulin, R. (2000). Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56, 123137.CrossRefGoogle Scholar
Poulin, R. and Mouritsen, K. N. (2006). Climate change, parasitism and the structure of intertidal ecosystems. Journal of Helminthology 80, 183191. doi: 10.1079/JOH2006341.CrossRefGoogle ScholarPubMed
Press, W. H., Teukolsky, S. A., Vatterling, W. T. and Flannery, B. P. (1996). Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK.Google Scholar
Salgado-Maldonado, G. (1993). Ecología de Helmintos parásitos de Cichlasoma uropthalmus (Günther) (Pises: Cichlidae) en la península de Yucatán, México. Tesis de doctorado. Centro de investigación y de Estudios avanzados del Instituto Politécnico Nacional, México.Google Scholar
Salgado-Maldonado, G. and Kennedy, C. R. (1997). Richness and similarity of helminth communities in the tropical cichlid fish Cichlasoma urophthalmus from the Yucatan Peninsula, Mexico. Parasitology 107, 7178.Google Scholar
Scharlemann, J. P. W., Benz, D., Hay, S. I., Purse, B. V., Tatem, A. J., Wint, G. R. W., and Rogers, D. J. (2008). Global data for ecology and epidemiology: a novel algorithm for temporal fourier processing MODIS data. PLos One 3, e1408. 1, 13711408. doi: 10.1371/journal.pone.0001408.CrossRefGoogle ScholarPubMed
Simková, A. (2005). Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Journal of Parasitology Research 95, 6572. doi: 10.1007/s00436-004-1261-y.CrossRefGoogle ScholarPubMed
Smith, J. L., Wootten, R. and Sommerville, C. (2007). The pathology of the early stages of the crustacean parasite, Lernaeocera branchialis (L.), on Atlantic cod, Gadus morhua L. Journal of Fish Diseases 30, 111.CrossRefGoogle Scholar
Soniat, M. T., Hofmann, E. E., Klinck, M. J. and Powell, N. E. (2009). Differential modulation of eastern oyster (Crassostrea virginica) disease parasites by the El-Niño-Southern Oscillation and the North Atlantic Oscillation. International Journal of Earth Sciences 98, 99114. doi: 10.1007/s00531-008-0364-6.CrossRefGoogle Scholar
Steinauer, M. and Font, W. (2003). Seasonal dynamics of the helminthes of bluegill (Lepomis macrochirus) in a subtropical region. Journal of Parasitology 89, 324328.CrossRefGoogle Scholar
Stenseth, N., Ottersen, G., Hurrell, J., Mysterud, A., Lima, M., Chan, K., Yoccoz, N. and Ådlandsvik, B. (2003). Review article. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings The Royal of Society of London, B 270, 20872096. doi: 10.1098/rspb.2003.2415.CrossRefGoogle ScholarPubMed
Trexler, J. C., Loftus, W. F., Jordan, F., Lorenz, J. J., Chick, J. H. and Kobza, R. M. (2000). Empirical assessment of fish introductions in a subtropical wetland: an evaluation of constrasting views. Biological Invasions 2, 265277.CrossRefGoogle Scholar
Thiel, M., Romano, M. C., Schwarz, U., Kurths, J. and Timmer, J. (2004). Surrogate- based hypothesis test without surrogates. International Journal of Bifurcation and Chaos 14, 2107.CrossRefGoogle Scholar
Tikhomirova, V. A. (1980). On nematodes of the family Skrjabillanidae (Nematoda: Camallanata:). Parazitologya 14, 258262.Google ScholarPubMed
Ujvari, B., Andersson, S., Brown, G., Shine, R. and Madsen, T. (2010). Climate-driven impacts of prey abundance on the population structure of a tropical aquatic predator. Oikos 119, 188196. doi: 10.1111/j.1600-0706.2009.17795.x.CrossRefGoogle Scholar
Vidal-Martínez, V. M., Scholz, T., Aguirre-Macedo, M. L., Gonzalez-Solis, D. and Mendoza-Franco, E. F. (2001). Atlas of the Helminth Parasites of Cichlid Fishes of México. Academia, Prague, Czech Republic.Google Scholar
Vincent, A. and Font, W. (2003). Host specificity and population structure of two exotic helminths, Camallanus cotti (nematoda) and Bothriocephalus acheilognathi (cestoda), parasitizing exotic fishes in Waianu Stream, O'Ahu, Hawaii. Journal of Parasitology 89, 540544.CrossRefGoogle Scholar
Violante-González, J., Aguirre-Macedo, M. L. and Vidal-Martínez, V. M. (2008). Temporal variation in the helminth parasite comunities of the pacific fat sleeper, Dormitator latifrons, from Tres Palos Lagoon, Guerrero, Mexico. Journal of Parasitology 94, 326334.CrossRefGoogle Scholar
Walker, P. D., Flik, G. and Wendelaar Bonga, S. J. (2004). The biology of parasites from the genus Argulus and a review of the interactions with its host. In Host-Parasite Interactions. (ed. Wiegertjes, G. F. and Flik, G.), pp 107129. Garland Science/BOIS Scientific Publishers. Hampshire, UK.CrossRefGoogle Scholar
Wei, W. W. S. (1990). Time Series Analysis: Univariate and Multivariate Methods. Adisson–Wesley, New York, USA.Google Scholar
Yildiz, K. and Kumantas, A. (2002). Argulus foliaceus infection in a goldfish (Carassius auratus). Israel Journal of Veterinary Medicine 57, 118120.Google Scholar
Zander, C. D. (2003). Four-year monitoring of parasite communities in gobiid fishes of the southwestern Baltic. I. Guild and component community. Journal of Parasitology Research 90, 502511.CrossRefGoogle ScholarPubMed
Zander, C. D. (2004). Four-year monitoring of parasite communities in gobiid fishes of the southwestern Baltic. II. Infracommunity. Journal of Parasitology Research 93, 1729.CrossRefGoogle Scholar
Zander, C. D. (2005). Four-year monitoring of parasite communities in gobiid fishes of the southwest Baltic. III. Parasite species diversity and applicability of monitoring. Journal of Parasitology Research 95, 136144.CrossRefGoogle ScholarPubMed