Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T19:47:24.244Z Has data issue: false hasContentIssue false

Tick salivary glands: function, physiology and future

Published online by Cambridge University Press:  19 April 2005

A. S. BOWMAN
Affiliation:
School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
J. R. SAUER
Affiliation:
Department of Entomology & Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

The salivary glands are the organs of osmoregulation in ticks and, as such, are critical to the biological success of ticks both during the extended period off the host and also during the feeding period on the host. Absorption of water vapour from unsaturated air into hygroscopic fluid produced by the salivary glands permit the tick to remain hydrated and viable during the many months between blood-meals. When feeding, the tick is able to return about 70% of the fluid and ion content of the blood-meal into the host by salivation into the feeding site. This saliva also contains many bioactive protein and lipid components that aid acquisition of the blood-meal. The salivary glands are the site of pathogen development and the saliva the route of transmission. The importance of the multifunctional salivary glands to tick survival and vector competency makes the glands a potential target for intervention. Here we review the cell biology of tick salivary glands and discuss the application of new approaches such as expressed sequence tag projects and RNA interference to this important area in the field of tick and tick-borne pathogen research.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALJAMALI, M. N., BIOR, A. D., SAUER, J. R. & ESSENBERG, R. C. ( 2003). RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Molecular Biology 12, 299305.CrossRefGoogle Scholar
ALJAMALI, M. N., BOWMAN, A. S., DILLWITH, J. W., TUCKER, J. S., YATES, G. W., ESSENBERG, R. C. & SAUER, J. R ( 2002). Identity and synthesis of prostaglandins in the lone star tick, Amblyomma americanum (L.), as assessed by radio-immunoassay and gas chromatography/mass spectrometry. Insect Biochemistry and Molecular Biology 32, 331341.Google Scholar
BARKER, D. M., OWNBY, C. L., KROLAK, J. M., CLAYPOOL, P. L. & SAUER, J. R. ( 1984). The effects of attachment, feeding and mating on the morphology of the type I alveolus of the salivary glands of the lone star tick, Amblyomma americanum (L.). Journal of Parasitology 70, 99113.CrossRefGoogle Scholar
BINNINGTON, K. C. ( 1978). Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. International Journal for Parasitology 8, 97115.CrossRefGoogle Scholar
BINNINGTON, K. C. & KEMP, D. H. ( 1980). Role of tick salivary glands in feeding and disease transmission. Advances in Parasitology 18, 315319.CrossRefGoogle Scholar
BINNINGTON, K. C. & STONE, B. F. ( 1977). Distribution of catecholamines in the cattle tick Boophilus microplus. Comparative Biochemistry and Physiology 58C, 2128.CrossRefGoogle Scholar
BIOR, A. D., ESSENBERG, R. C. & SAUER, J. R. ( 2002). Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni. Insect Biochemistry and Molecular Biology 32, 645655.CrossRefGoogle Scholar
BORGNIA, M., NIELSEN, S., ENGEL, A. & AGRE, P. ( 1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry 68, 425458.CrossRefGoogle Scholar
BOWMAN, A. S., DILLWITH, J. W., MADDEN, R. D. & SAUER, J. R. ( 1995 b). Uptake, incorporation and redistribution of arachidonic acid in isolated salivary glands of the lone star tick. Insect Biochemistry and Molecular Biology 25, 441447.Google Scholar
BOWMAN, A. S., DILLWITH, J. W., MADDEN, R. D. & SAUER, J. R. ( 1995 c). Regulation of free arachidonic acid levels in isolated salivary glands from the lone star tick: a role for dopamine. Archives of Insect Biochemistry and Physiology 29, 309327.Google Scholar
BOWMAN, A. S., DILLWITH, J. W. & SAUER, J. R. ( 1996). Tick salivary prostaglandins: presence, origin and significance. Parasitology Today 12, 388396.CrossRefGoogle Scholar
BOWMAN, A. S., SAUER, J. R., NEESE, P. A. & DILLWITH, J. W. ( 1995 a). Origin of arachidonic acid in the salivary glands of the lone star tick, Amblyomma americanum. Insect Biochemistry and Molecular Biology 25, 225233.Google Scholar
BOWMAN, A. S., SAUER, J. R., SHIPLEY, M. M., GENGERL, C. L., SURDICK, M. R. & DILLWITH, J. W. ( 1993). Tick salivary prostaglandins: their precursors and biosynthesis. In Host Regulated Developmental Mechanisms in Vector Arthropods. 3. ( ed. Borovsky, D. & Spielman, A.), pp. 169177. Vero Beach, Florida, University of Florida, Institute of Food and Agriculture.
BOWMAN, A. S., SAUER, J. R., ZHU, K. & DILLWITH, J. W. ( 1995 d). Biosynthesis of salivary prostaglandins in the lone star tick, Amblyomma americanum. Insect Biochemistry and Molecular Biology 25, 735741.Google Scholar
CHINERY, W. A. ( 1965). Studies on the various glands of the tick, Haemophysalis spingera Neumann 1987. Part III. The salivary glands. Acta Tropica 22, 321349.Google Scholar
COLEMAN, R. A., KENNEDY, I., HUMPHREY, P. P. A., BUNCE, K. & LUMLEY, P. ( 1990). Prostanoids, and their receptors. In Membranes and Receptors. Comprehensive Medicinal Chemistry, 3. ( ed. Emmett, J. C.), pp. 643714. Oxford, Pergamon Press.
COONS, L. B. & ALBERTI, G. ( 1999). The Acari-Ticks. In Microscopic Anatomy of Invertebrates. 8B. Chelicerate Arthropoda (ed. Harrison, F. W. & Foelix, R.), pp. 267514. New York, Wiley-Liss.
COONS, L. B. & LAMOREAUX, W. J. ( 1986). Developmental changes in the salivary glands of male and female Dermacentor variabilis (Say) during feeding. In Host Regulated Developmental Mechanisms in Vector Arthropods. 2. ( ed. Borovsky, D. & Spielman, A.), pp. 8692. Vero Beach, Florida, University of Florida, Institute of Food and Agriculture.
COONS, L. B., LESSMAN, C. A., WARD, M. W., BERG, R. H. & LAMOREAUX, W. J. ( 1994). Evidence of a myoepithelial cell in tick salivary glands. International Journal for Parasitology 24, 551562.CrossRefGoogle Scholar
COONS, L. B. & ROSHDY, M. A. ( 1981). Ultrastructure of granule secretion in salivary glands of Argas (Persicargas) arboreus during feeding. Zeitschrift für Parasitenkunde – Parasitology Research 65, 225234.CrossRefGoogle Scholar
CRAMPTON, A. L., MILLER, C., BAXTER, G. D. & BARKER, S. C. ( 1998). Expressed sequence tags and new genes from the cattle tick, Boophilus microplus. Experimental and Applied Acarology 22, 177186.CrossRefGoogle Scholar
EL SHOURA, S. M. ( 1985). Ultrastructure of salivary glands of Ornithodorus (Ornithodorus) moubata (Ixodoidae: Argasidae). Journal of Morphology 186, 4552.CrossRefGoogle Scholar
FAWCETT, D. W., BINNINGTON, K. C. & VOIGHT, W. R. ( 1986). The cell biology of the ixodid tick salivary gland. In Morphology, Physiology and Behavioral Biology of Ticks. ( ed. Sauer J. R. & Hair, J. A.), pp. 2245. Chichester, Ellis Horwood.
FELDMAN-MUHSAM, B., BORUT, S. & SALITERNIK-GIVANT, S. ( 1970). Salivary secretion of the male tick during copulation. Journal of Insect Physiology 16, 19451949.CrossRefGoogle Scholar
GAEDE, H. & KNULLE, W. ( 1997). On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. The Journal of Experimental Biology 200, 14911498.Google Scholar
GEPPERT, M., GODA, Y., HAMMER, R. E., LI, C., ROSAHL, T. W., STEVENS, C. F. & SUDHOF, T. C. ( 1994). Synaptotagmin I: a major calcium sensor for transmitter release at a central synapse. Cell 79, 717727.CrossRefGoogle Scholar
GILL, H. S. & WALKER, A. R. ( 1987). The salivary glands of Hyalomma anatolicum anatolicum: structural changes during attachment and feeding. International Journal for Parasitology 17, 13811392.CrossRefGoogle Scholar
GREGSON, J. D. ( 1967). Observations on the movement of fluids in the vicinity of the mouthparts of naturally feeding Dermacentor andersoni Stiles. Parasitology 57, 18.CrossRefGoogle Scholar
GRESZ, V., KWON, T. H., HURLEY, P. T., VARGA, G., ZELLES, T., NIELSEN, S., CASE, R. M. & STEWARD, M. C. ( 2001). Identification and localisation of aquaporin water channels in human salivary glands. American Journal of Physiology 281, G247G254.Google Scholar
GUO, X., HARMON, M. A., LAUDET, V., MANGELSDORF, D. J. & PALMER, M. J. ( 1997). Isolation of a functional ecdysteroid receptor homologue from the ixodid tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 27, 945962.CrossRefGoogle Scholar
GUO, X., XU, Q., HARMON, M., JIN, X., LAUDET, V., MANGELSDORF, D. J. & PALMER, M. J. ( 1998). Isolation of two functional retinoid X receptor subtypes from the ixodid tick, Amblyomma americanum (L.). Molecular and Cellular Endocrinology 139, 4560.CrossRefGoogle Scholar
HARRIS, R. A. & KAUFMAN, W. R. ( 1981). Hormonal control of salivary gland degeneration in the ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 27, 241248.CrossRefGoogle Scholar
HARRIS, R. A. & KAUFMAN, W. R. ( 1985). Ecdysteroids: possible candidates for the hormone which triggers salivary gland degeneration in the tick, Amblyomma hebraeum. Experientia 41, 740741.CrossRefGoogle Scholar
HECHEMY, K. E., SAMSONOFF, W. A., HARRIS, H. L. & McKEE, M. ( 1992). Adherence and entry of Borrelia burgdorferi in Vero cells. Journal of Medical Microbiology 36, 229238.CrossRefGoogle Scholar
HILL, C. A. & GUTIERREZ, J. A. ( 2000). Analysis of the expressed genome of the lone star tick, Amblyomma americanum (Acari: Ixodidae) using an expressed sequence tag approach. Microbial and Comparative Genomics 5, 89101.CrossRefGoogle Scholar
HILLYARD, P. D. ( 1996). Ticks of North–West Europe. London, Linnean Society.
HOWELL, C. J. ( 1966). Collection of salivary gland secretion from the argasid, Ornithodoros savignyi Audouin (1827) by use of a pharmacological stimulant. Journal of the South African Veterinary Medical Association 37, 3639.Google Scholar
HSU, M.-H. & SAUER, J. R. ( 1975). Ion and water balance in the feeding lone star tick. Comparative Biochemistry and Physiology 52A, 269276.CrossRefGoogle Scholar
ISHIKAWA, Y. & ISHIDA, H. ( 2000). Aquaporin water channel in salivary glands. Japanese Journal of Pharmacology 83, 95101.CrossRefGoogle Scholar
JASIK, K. & BUCZEK, A. ( 2004). Development of the salivary glands in embryos of Ixodes ricinus (Acari: Ixodidae). Experimental and Applied Acarology 32, 219229.CrossRefGoogle Scholar
KARIM, S., ESSENBERG, R. C., DILLWITH, J. W., TUCKER, J., BOWMAN, A. S. & SAUER, J. R. ( 2002). Identification of SNARE and cell trafficking regulatory proteins in salivary glands of the lone star tick. Insect Biochemistry and Molecular Biology 32, 17111721.CrossRefGoogle Scholar
KARIM, S., RAMAKRISHNAN, V. J., TUCKER, J. S., ESSENBERG, R. C. & SAUER, J. R. ( 2004). Amblyomma americanum salivary glands: double stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochemistry and Molecular Biology 34, 407413.CrossRefGoogle Scholar
KAUFMAN, W. R. ( 1976). The influence of various factors on fluid secretion by in vitro salivary glands of ixodid ticks. Journal of Experimental Biology 64, 727742.Google Scholar
KAUFMAN, W. R. ( 1977). The influence of adrenergic agonists and their antagonists on isolated salivary glands of ixodid ticks. European Journal of Pharmacology 45, 6168.CrossRefGoogle Scholar
KAUFMAN, W. R. ( 1991). Correlation between haemolymph ecdysteriod titre, salivary gland degeneration and ovarian development in the ixodid tick, Amblyomma hebraeum Koch. Journal of Insect Physiology 37, 9599.CrossRefGoogle Scholar
KAUFMAN, W. R. & HARRIS, R. A. ( 1983). Neural pathways mediating salivary fluid secretion in the ixodid tick, Amblyomma hebraeum. Canadian Journal of Zoology 61, 19761980.CrossRefGoogle Scholar
KAUFMAN, W. R. & PHILLIPS, J. E. ( 1973). Ion and water balance in the ixodid tick Dermacentor andersoni. I. Routes of ion and water excretion. Journal of Experimental Biology 58, 523536.Google Scholar
KAUFMAN, W. R. & WONG, D. L. P. ( 1983). Evidence for multiple receptors mediating fluid secretion in salivary glands of ticks. European Journal of Pharmacology 87, 4352.CrossRefGoogle Scholar
KEMP, D. H. & TATCHELL, R. J. ( 1971). The mechanism of feeding and salivation in Boophilus microplus (Canestrini, 1887). Zeitschrift für Parasitenkunde – Parasitology Research 37, 5569.CrossRefGoogle Scholar
KIRKLAND, W. L. ( 1971). Ultrastructural changes in the nymphal salivary glands of the rabbit tick, Haemaphysalis leporispalustris during feeding. Journal of Insect Physiology 17, 19331946.CrossRefGoogle Scholar
KROLAK, J. M., OWNBY, C. L. & SAUER, J. R. ( 1982). Alveolar structure of salivary glands of the lone star tick, Amblyomma americanum (L.): unfed females. Journal of Parasitology 68, 6182.CrossRefGoogle Scholar
KURTTI, T. J., MUNDERLOH, U. G., HAYES, S. F., KRUEGER, D. E. & AHLSTRAND, G. G. ( 1994). Ultrastructural analysis of the invasion of tick cells by Lyme disease spirochetes (Borrelia burgdorferi) in vitro. Canadian Journal of Zoology 72, 977994.CrossRefGoogle Scholar
L'AMOREAUX, W. J. L., JUNAID, L. & TREVIDI, S. ( 2003). Morphological evidence that salivary gland degeneration in the American dog tick, Dermacentor variabilis (Say), involves programmed cell death. Tissue & Cell 35, 9599.CrossRefGoogle Scholar
LAMOREAUX, W. J., NEEDHAM, G. R. & COONS, L. B. ( 1994). Fluid secretion by isolated tick salivary glands depends on an intact cytoskeleton. International Journal for Parasitology 24, 563567.CrossRefGoogle Scholar
LINDSAY, P. J. & KAUFMAN, W. R. ( 1986). Potentiation of salivary fluid secretion in ixodid ticks: a new receptor system for γ-aminobutyric acid. Canadian Journal of Physiology and Pharmacology 64, 11191126.CrossRefGoogle Scholar
LOMAS, L. O. & KAUFMAN, W. R. ( 1992). An indirect mechanism by which a protein from the male gonad hastens salivary gland degeneration in the female tick, Amblyomma hebraeum. Archives of Insect Biochemistry and Physiology 21, 169178.CrossRefGoogle Scholar
LOMAS, L. O., TURNER, P. C. & REES, H. H. ( 1997). A novel neuropeptide-endocrine interaction controlling ecdysteroid production in ixodid ticks. Proceedings of the Royal Society of London, Series B 264, 589596.CrossRefGoogle Scholar
LUO, C., McSWAIN, J. L., TUCKER, J. S., SAUER, J. R. & ESSENBERG, R. C. ( 1997). Cloning and sequence of a gene for the homologue of the stearoyl CoA desaturase from the salivary glands of the tick Amblyomma americanum. Insect Molecular Biology 6, 267271.CrossRefGoogle Scholar
MA, T., SONG, Y., GILLESPIE, A., CARLSON, E. J., EPSTEIN, C. J. & VERKMAN, A. S. ( 1999). Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. Journal of Biological Chemistry 274, 2007120074.CrossRefGoogle Scholar
MADDEN, R. D., SAUER, J. R., DILLWITH, J. W. & BOWMAN, A. S. ( 1996). Dietary modification of host blood lipids affect reproduction in the lone star tick, Amblyomma americanum (L.). Journal of Parasitology 82, 203209.CrossRefGoogle Scholar
MANE, S. D., DARVILLE, R. G., SAUER, J. R. & ESSENBERG, R. C. ( 1985). Cyclic AMP-dependent protein kinase from the salivary glands of the tick, Amblyomma americanum – partial purification and properties. Insect Biochemistry 15, 777787.CrossRefGoogle Scholar
MANE, S. D., SAUER, J. R. & ESSENBERG, R. C. ( 1988). Molecular forms and free cAMP receptors of the cAMP-dependent protein kinase catalytic subunit isoforms from the lone star tick, Amblyomma americanum (L.). Insect Biochemistry 29, 4351.Google Scholar
MANS, B. J., VENTER, J. D., COONS, L. B., LOUW, A. I. & NEITZ, W. H. ( 2004). A reassessment of argasid tick salivary gland ultrastructure from an immuno-cytochemical perspective. Experimental and Applied Acarology 33, 119129.CrossRefGoogle Scholar
MAO, H. & KAUFMAN, W. R. ( 1998). DNA binding properties of the ecdysteroid receptor in the salivary gland of the female ixodid tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 28, 947957.CrossRefGoogle Scholar
MAO, H. & KAUFMAN, W. R. ( 1999). Profile of the ecdysteroid hormone and its receptor in the salivary gland of the adult female tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 29, 3352.CrossRefGoogle Scholar
MAO, H., McBLAIN, W. A. & KAUFMAN, W. R. ( 1995). Some properties of the ecdysteroid receptor in the salivary gland of the ixodid tick, Amblyomma hebraeum. General and Comparative Endocrinology 99, 340348.CrossRefGoogle Scholar
MATSUZAKI, T., SUZUKI, T., KOYAMA, H. & TAKATA, K. ( 1999). Aquaporin-5 (AQP-5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell and Tissue Research 295, 513521.CrossRefGoogle Scholar
MAY, A. P., WHITEHEART, S. W. & WEIS, W. I. ( 2001). Unraveling the mechanism of the vesicle transport ATPase NSF, the N-Ethylmaleimide sensitive factor. Journal of Biological Chemistry 276, 2199121994.CrossRefGoogle Scholar
McSWAIN, J. L., ESSENBERG, R. C. & SAUER, J. R. ( 1985). Cyclic AMP mediated phosphorylation of endogenous proteins in salivary glands of the lone star tick, Amblyomma americanum (L.). Insect Biochemistry 15, 789802.CrossRefGoogle Scholar
McSWAIN, J. L., ESSENBERG, R. C. & SAUER, J. R. ( 1992). Oral secretion elicited by effectors of signal transduction pathways in the salivary glands of Amblyomma americanum (Acari: Ixodidae). Journal of Medical Entomology 29, 4148.CrossRefGoogle Scholar
McSWAIN, J. L., LUO, C., DESILVA, G. A., PALMER, M. J., TUCKER, J. S., SAUER, J. R. & ESSENBERG, R. C. ( 1997). Cloning and sequence of a gene for a homologue of the C subunit of the V-ATPase from the salivary gland of the tick Amblyomma americanum (L.). Insect Molecular Biology 8, 6776.CrossRefGoogle Scholar
McSWAIN, J. L., SCHMIDT, S. P., CLAYPOOL, D. M., ESSENBERG, R. C. & SAUER, J. R. ( 1987). Subcellular location of phosphoproteins in salivary glands of the lone star tick, Amblyomma americanum (L.). Archives of Insect Biochemistry and Physiology 5, 2943.CrossRefGoogle Scholar
MEGAW, M. W. J. ( 1977). The innervation of the salivary gland of the tick, Boophilus microplus. Cell and Tissue Research 184, 551558.CrossRefGoogle Scholar
MEGAW, M. W. J. & BEADLE, M. W. J. ( 1979). Structure and function of the salivary glands of the tick, Boophilus microplus Canestrini (Acarina: Ixodidae). International Journal of Insect Morphology and Embryology 8, 6783.CrossRefGoogle Scholar
NARASIMHAN, S., MONTGOMERY, R. R., DEPONTE, K., TSCHUDI, C., ANDERSON, J. F., SAUER, J. R., CAPPELLO, M., KANTOR, F. S. & FIKRIG, E. ( 2004). Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proceedings of the National Academy of Sciences, USA 101, 11411146.CrossRefGoogle Scholar
NEEDHAM, G. R. & SAUER, J. R. ( 1975). Control of fluid secretion by isolated salivary glands of the lone star tick. Journal of Insect Physiology 21, 18931898.CrossRefGoogle Scholar
NEEDHAM, G. R. & SAUER, J. R. ( 1979). Involvement of calcium and cyclic AMP in controlling ixodid tick salivary fluid secretion. Journal of Parasitology 65, 531542.CrossRefGoogle Scholar
NEEDHAM, G. R. & TEEL, P. D. ( 1986). Water balance by ticks between bloodmeals. In Morphology, Physiology and Behavioral Biology of Ticks ( ed. Sauer J. R. & Hair, J. A.), pp. 100151. Chichester, Ellis Horwood.
NEEDHAM, G. R. & TEEL, P. D. ( 1991). Off-host physiological ecology of ixodid ticks. Annual Review of Entomology 36, 659681.CrossRefGoogle Scholar
NEGISHI, M., SUGIMOTO, Y. & ICHIKAWA, A. ( 1993). Prostanoid receptors and their biological action. Progress in Lipid Research 32, 417434.CrossRefGoogle Scholar
NENE, V., LEE, D., QUACKENBUSH, J., SKILTON, R., MWAURA, S., GARDNER, M. J. & BISHOP, R. ( 2002). AvGI, an index of genes transcribed in the salivary glands of the ixodid tick Amblyomma variegatum. International Journal for Parasitology 32, 14471456.CrossRefGoogle Scholar
OAKS, J. F., McSWAIN, J. L., BANTLE, J. A., ESSENBERG, R. C. & SAUER, J. R. ( 1991). Putative new expression of genes in ixodid tick salivary gland development during feeding. Journal of Parasitology 77, 378383.CrossRefGoogle Scholar
PAL, U., YANG, X., CHEN, M., BOCKENSTEDT, L. K., ANDERSON, J. F., FLAVELL, R. A., NORGARD, M. V. & FIKRIG, E. ( 2004). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. Journal of Clinical Investigation 113, 220230.CrossRefGoogle Scholar
PALMER, M. J., McSWAIN, J. L., SPATZ, M. D., TUCKER, J. S., ESSENBERG, R. C. & SAUER, J. R. ( 1999). Molecular cloning of cAMP-dependent protein kinase catalytic subunit isoforms from the lone star tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 29, 4351.CrossRefGoogle Scholar
PEDIBHOTLA, V. K., SAUER, J. R. & STANLEY-SAMUELSON, D. W. ( 1997). Prostaglandin biosynthesis by salivary glands isolated from the lone star tick Amblyomma americanum. Insect Biochemistry and Molecular Biology 27, 255261.CrossRefGoogle Scholar
PRESTON, G. M., CARROLL, T. P., GUGGINO, W. B. & AGRE, P. ( 1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385387.CrossRefGoogle Scholar
QIAN, Y., ESSENBERG, R. C., DILLWITH, J. W., BOWMAN, A. S. & SAUER, J. R. ( 1997). A specific prostaglandin E2 receptor and its role in modulating salivary secretion in the female tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 27, 387395.CrossRefGoogle Scholar
QIAN, Y., YUAN, J., ESSENBERG, R. C., BOWMAN, A. S., SHOOK, A. L., DILLWITH, J. W. & SAUER, J. R. ( 1998). Prostaglandin E2 in the salivary glands of the female tick Amblyomma americanum (L.): calcium mobilization and exocytosis. Insect Biochemistry and Molecular Biology 28, 221228.Google Scholar
RIBEIRO, J. M. C., EVANS, P. M., McSWAIN, J. L. & SAUER, J. R. ( 1992). Amblyomma americanum: Characterization of salivary prostaglandins E2 and F by RP-HPLC/bioassay and gas chromatography-mass spectrometry. Experimental Parasitology 74, 112116.CrossRefGoogle Scholar
ROSHDY, M. A. & COONS, L. B. ( 1975). The subgenus Persicargas (Ixodoidae: Argasidae: Argas). 23. Fine structure of the salivary glands of unfed A. (P.) arboreus Kaiser, Hoogstraal and Kohls. Journal of Parasitology 61, 743752.Google Scholar
RUDOLPH, D. & KNULLE, W. ( 1974). Site and mechanism of water vapour uptake from the atmosphere of ixodid ticks. Nature 249, 8485.CrossRefGoogle Scholar
RUDOLPH, D. & KNULLE, W. ( 1979). Mechanisms contributing to water balance in non-feeding ticks and their ecological implications. In Recent Advances in Acarology, 1. (ed. Rodriguez, J. G.), pp. 375383. New York, Academic Press.CrossRef
SAUER, J. R., BOWMAN, A. S., McSWAIN, J. L. & ESSENBERG, R. C. ( 1996). Salivary gland physiology of blood-feeding arthropods. In The Immunology of Host–Ectoparasitic Arthropod Relationships (ed. Wikel, S. K.), pp. 6284. Wallingford, CABI International.
SAUER, J. R. & ESSENBERG, R. C. ( 1984). Role of cyclic nucleotides and calcium in controlling tick salivary gland function. American Zoologist 24, 217227.CrossRefGoogle Scholar
SAUER, J. R., ESSENBERG, R. C. & BOWMAN, A. S. ( 2000). Salivary glands in ixodid ticks: control and mechanism of secretion. Journal of Insect Physiology 46, 10691078.CrossRefGoogle Scholar
SAUER, J. R., MANE, S. D., SCHMIDT, S. P. & ESSENBERG, R. C. ( 1986). Molecular basis for salivary secretion in ixodid ticks. In Morphology, Physiology and Behavioral Biology of Ticks ( ed. Sauer, J. R. & Hair, J. A.), pp. 5574. Chichester, Ellis Horwood.
SAUER, J. R., McSWAIN, J. L., BOWMAN, A. S. & ESSENBERG, R. C. ( 1995). Tick salivary gland physiology. Annual Review of Entomology 40, 245267.CrossRefGoogle Scholar
SCHMIDT, S. P., ESSENBERG, R. C. & SAUER, J. R. ( 1981). Evidence for a D1 dopamine receptor in the salivary glands of Amblyomma americanum (L.). Journal of Cyclic Nucleotide Research 7, 375384.Google Scholar
SCHMIDT, S. P., ESSENBERG, R. C. & SAUER, J. R. ( 1982). Dopamine sensitive adenylate cyclase in the salivary glands of the lone star tick. Comparative Biochemistry and Physiology 72, 914.Google Scholar
SHIPLEY, M. M., DILLWITH, J. W., BOWMAN, A. S., ESSENBERG, R. C. & SAUER, J. R. ( 1993 b). Changes in lipids of salivary glands of the lone star tick, Amblyomma americanum, during feeding. Journal of Parasitology 79, 834842.Google Scholar
SHIPLEY, M. M., DILLWITH, J. W., ESSENBERG, R. C., HOWARD, R. W. & SAUER, J. R. ( 1993 a). Analysis of lipids in the salivary glands of Amblyomma americanum (L.): detection of a high level of arachidonic acid. Archives of Insect Biochemistry and Physiology 23, 3752.Google Scholar
SIGAL, M. D., NEEDHAM, G. R. & MACHIN, J. ( 1991). Hyperosmotic oral fluid secretion during active water vapour absorption and during desiccation-induced storage-excretion by the unfed tick Amblyomma americanum. Journal of Experimental Biology 157, 585591.Google Scholar
SMITH, W. L. ( 1992). Prostanoid biosynthesis and mechanisms of action. American Journal of Physiology 263, F181F191.CrossRefGoogle Scholar
STANELY-SAMUELSON, D. W. ( 1994). Prostaglandins and related eicosanoids in insects. Advances in Insect Physiology 24, 116121.CrossRefGoogle Scholar
TATCHELL, R. J. ( 1967). Salivary secretions in the cattle tick as a means of water elimination. Nature 213, 940941.CrossRefGoogle Scholar
TATCHELL, R. J. ( 1969). The ionic regulatory role of salivary secretions of the cattle tick, Boophilus microplus. Journal of Insect Physiology 15, 14211430.CrossRefGoogle Scholar
TILL, W. M. ( 1961). A contribution to the anatomy and histology of the brown ear tick Rhipicephalus appendiculatus Neumann. Memoirs of the Entomological Society of South Africa 6, 1124.Google Scholar
VALENZUELA, J. G., FRANCISCHETTI, I. M. B., PHAM, V. M., GARFIELD, M. K., MATHER, T. N. & RIBEIRO, J. M. C. ( 2002). Exploring the sialome of the tick Ixodes scapularis. Journal of Experimental Biology 205, 28432864.Google Scholar
VERKMAN, A. S. ( 2002). Aquaporin water channels and endothelial cell function. Journal of Anatomy 200, 617627.CrossRefGoogle Scholar
WALKER, A. R., FLETCHER, J. D. & GILL, H. S. ( 1985). Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. International Journal for Parasitology 15, 81100.CrossRefGoogle Scholar
WEISS, B. L. & KAUFMAN, W. R. ( 2004). Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proceedings of the National Academy of Sciences, USA 101, 58745879.CrossRefGoogle Scholar
WONG, D. L. P. & KAUFMAN, W. ( 1981). Potentiation by spiperone and other butyrophenones of fluid secretion by isolated salivary glands of ixodid ticks. European Journal of Pharmacology 73, 163173.CrossRefGoogle Scholar
YUAN, J., BOWMAN, A. S., ALJAMALI, M., PAYNE, M. R., TUCKER, J. S., DILLWITH, J. W., ESSENBERG, R. C. & SAUER, J. R. ( 2000). PGE2 stimulated secretion of protein in the salivary glands of the lone star tick via a phosphoinositide signaling pathway. Insect Biochemistry and Molecular Biology 30, 10991106.CrossRefGoogle Scholar