Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T04:51:27.520Z Has data issue: false hasContentIssue false

Toxoplasma gondii induce apoptosis of neural stem cells via endoplasmic reticulum stress pathway

Published online by Cambridge University Press:  10 March 2014

TENG WANG
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
JIE ZHOU
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
XIAOFENG GAN
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
HUA WANG
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China Department of Neural Endocrinology, Feidong People's Hospital, Hefei 231600, PR China
XIAOJUAN DING
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
LINGZHI CHEN
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
YONGZHONG WANG
Affiliation:
School of Life Sciences, Anhui University, Hefei 230039, PR China Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
JIAN DU
Affiliation:
Department of Biochemistry, Anhui Medical University, Hefei 230032, PR China
JILONG SHEN
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
LI YU*
Affiliation:
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
*
* Corresponding author: Department of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China. E-mail: lilyyu33@gmail.com

Summary

Toxoplasma gondii is a major cause of congenital brain disease; however, the underlying mechanism of neuropathogenesis in brain toxoplasmosis remains elusive. To explore the role of T. gondii in the development of neural stem cells (NSCs), NSCs were isolated from GD14 embryos of ICR mice and were co-cultured with tachyzoites of T. gondii RH strain. We found that apoptosis levels of the NSCs co-cultured with 1×106 RH tachyzoites for 24 and 48 h significantly increased in a dose-dependent manner, as compared with the control. Western blotting analysis displayed that the protein level of C/EBP homologous protein (CHOP) was up-regulated, and caspase-12 and c-Jun N-terminal kinase (JNK) were activated in the NSCs co-cultured with the parasites. Pretreatment with endoplasmic reticulum stress (ERS) inhibitor (TUDCA) and caspase-12 inhibitor (Z-ATAD-FMK) inhibited the expression or activation of the key molecules involved in the ERS-mediated apoptotic pathway, and subsequently decreased the apoptosis levels of the NSCs induced by the T. gondii. The findings here highlight that T. gondii induced apoptosis of the NSCs through the ERS signal pathway via activation of CHOP, caspase-12 and JNK, which may constitute a potential molecular mechanism responsible for the cognitive disturbance in neurological disorders of T. gondii.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. R., Nguyen, L. X., Sargent, K. E., Lipson, K. L., Hackett, A. and Urano, F. (2004). High ER stress in beta-cells stimulates intracellular degradation of misfolded insulin. Biochemical and Biophysical Research Communications 324, 166170. doi:10.1016/j.bbrc.2004.09.035.Google Scholar
Amano, T., Yamasaki, S., Yagishita, N., Tsuchimochi, K., Shin, H., Kawahara, K., Aratani, S., Fujita, H., Zhang, L., Ikeda, R., Fujii, R., Miura, N., Komiya, S., Nishioka, K., Maruyama, I., Fukamizu, A. and Nakajima, T. (2003). Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes and Development 17, 24362449. doi:10.1101/gad.1096603.CrossRefGoogle ScholarPubMed
Andreoletti, O., Budka, H., Buncic, S., Colin, P., Collins, D. J., Koeijer, A. D., Griffin, J., Havelaar, A., Hope, J., Klein, G., Kruse, H., Magnino, S., López, A. M., McLauchlin, J., Nguyen-Thé, C., Noeckler, K., Noerrung, B., Maradona, M. P., Roberts, T., Vågsholm, I. and Vanopdenbosch, E. (2007). Scientific opinion of the Panel on Biological Hazards on a request from EFSA on surveillance and monitoring of Toxoplasma in humans, foods and animals. EFSA Journal 583, 164.Google Scholar
Araki, E., Oyadomari, S. and Mori, M. (2003). Endoplasmic reticulum stress and diabetes mellitus. Internal Medicine 42, 714. doi:10.2169/internalmedicine.42.7.Google Scholar
Carmen, J. C. and Sinai, A. P. (2007). Suicide prevention: disruption of apoptotic pathways by protozoan parasites. Molecular Microbiology 64, 904916. doi:10.1111/j.1365-2958.2007.05714.x.Google Scholar
Contreras-Ochoa, C. O., Lagunas-Martinez, A., Belkind-Gerson, J., Diaz-Chavez, J. and Correa, D. (2013). Toxoplasma gondii invasion and replication within neonate mouse astrocytes and changes in apoptosis related molecules. Experimental Parasitology 134, 256265. doi:10.1016/j.exppara.2013.03.010.CrossRefGoogle ScholarPubMed
D'Aiuto, L., Di Maio, R., Heath, B., Raimondi, G., Milosevic, J., Watson, A. M., Bamne, M., Parks, W. T., Yang, L., Lin, B., Miki, T., Mich-Basso, J. D., Arav-Boger, R., Sibille, E., Sabunciyan, S., Yolken, R. and Nimgaonkar, V. (2012). Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells. PLoS One 7, e49700. doi:10.1371/journal.pone.0049700.CrossRefGoogle ScholarPubMed
Das, S. and Basu, A. (2008). Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. Journal of Neurochemistry 106, 16241636. doi:10.1111/j.1471-4159.2008.05511.x.Google Scholar
Dubey, J. P. (2010). Toxoplasmosis of Animals and Humans, 2nd Edn. CRC Press, Boca Raton, FL, USA.Google Scholar
el-Sagaff, S., Salem, H. S., Nichols, W., Tonkel, A. K. and Abo-Zenadah, N. Y. (2005). Cell death pattern in cerebellum neurons infected with Toxoplasma gondii . Journal of the Egyptian Society of Parasitology 35, 809818.Google ScholarPubMed
Fang, Y., Yu, S., Ellis, J. S., Sharav, T. and Braley-Mullen, H. (2010). Comparison of sensitivity of Th1, Th2, and Th17 cells to Fas-mediated apoptosis. Journal of Leukocyte Biology 87, 10191028. doi:10.1189/jlb.0509352.Google Scholar
Gao, B., Lee, S. M., Chen, A., Zhang, J., Zhang, D. D., Kannan, K., Ortmann, R. A. and Fang, D. (2008). Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Reports 9, 480485. doi:10.1038/embor.2008.37.Google Scholar
Grant, I. H., Gold, J. W., Rosenblum, M., Niedzwiecki, D. and Armstrong, D. (1990). Toxoplasma gondii serology in HIV-infected patients: the development of central nervous system toxoplasmosis in AIDS. Aids 4, 519521.Google Scholar
Hermanns, B., Brunn, A., Schwarz, E. R., Sachweh, J. S., Seipelt, I., Schroder, J. M., Vogel, U., Schoendube, F. A. and Buettner, R. (2001). Fulminant toxoplasmosis in a heart transplant recipient. Pathology, Research and Practice 197, 211215.Google Scholar
Hill, D. and Dubey, J. P. (2002). Toxoplasma gondii: transmission, diagnosis and prevention. Clinical Microbiology and Infection 8, 634640. doi:10.1046/j.1469-0691.2002.00485.x.CrossRefGoogle ScholarPubMed
Joseph, B. and Hermanson, O. (2010). Molecular control of brain size: regulators of neural stem cell life, death and beyond. Experimental Cell Research 316, 14151421. doi:10.1016/j.yexcr.2010.03.012.Google Scholar
Kaufman, R. J., Scheuner, D., Schroder, M., Shen, X., Lee, K., Liu, C. Y. and Arnold, S. M. (2002). The unfolded protein response in nutrient sensing and differentiation. Nature Reviews. Molecular Cell Biology 3, 411421. doi:10.1038/nrm829.CrossRefGoogle ScholarPubMed
Laliberte, J. and Carruthers, V. B. (2008). Host cell manipulation by the human pathogen Toxoplasma gondii . Cellular and Molecular Life Sciences: CMLS 65, 19001915. doi:10.1007/s00018-008-7556-x.Google Scholar
Lei, X., Zhang, S., Barbour, S. E., Bohrer, A., Ford, E. L., Koizumi, A., Papa, F. R. and Ramanadham, S. (2010). Spontaneous development of endoplasmic reticulum stress that can lead to diabetes mellitus is associated with higher calcium-independent phospholipase A2 expression: a role for regulation by SREBP-1. Journal of Biological Chemistry 285, 66936705. doi:10.1074/jbc.M109.084293.Google Scholar
Li, R. Y., Kosugi, I. and Tsutsui, Y. (2004). Activation of murine cytomegalovirus immediate-early promoter in mouse brain after transplantation of the neural stem cells. Acta Neuropathologica 107, 406412. doi:10.1007/s00401-004-0828-0.Google Scholar
Merkle, F. T. and Alvarez-Buylla, A. (2006). Neural stem cells in mammalian development. Current Opinion in Cell Biology 18, 704709. doi:10.1016/j.ceb.2006.09.008.CrossRefGoogle ScholarPubMed
Mordue, D. G., Monroy, F., La Regina, M., Dinarello, C. A. and Sibley, L. D. (2001). Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. Journal of Immunology 167, 45744584.Google Scholar
Mutnal, M. B., Cheeran, M. C., Hu, S. and Lokensgard, J. R. (2011). Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain. PLoS One 6, e16211. doi:10.1371/journal.pone.0016211.Google Scholar
Nadav, E., Shmueli, A., Barr, H., Gonen, H., Ciechanover, A. and Reiss, Y. (2003). A novel mammalian endoplasmic reticulum ubiquitin ligase homologous to the yeast Hrd1. Biochemical and Biophysical Research Communications 303, 9197. doi: S0006291X03002791.CrossRefGoogle Scholar
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A. and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98103. doi: 10.1038/47513.Google Scholar
Nash, P. B., Purner, M. B., Leon, R. P., Clarke, P., Duke, R. C. and Curiel, T. J. (1998). Toxoplasma gondii infected cells are resistant to multiple inducers of apoptosis. Journal of Immunology 160, 18241830.Google Scholar
Nishikawa, Y., Kawase, O., Vielemeyer, O., Suzuki, H., Joiner, K. A., Xuan, X. and Nagasawa, H. (2007). Toxoplasma gondii infection induces apoptosis in noninfected macrophages: role of nitric oxide and other soluble factors. Parasite Immunology 29, 375385. doi:10.1111/j.1365-3024.2007.00956.x.Google Scholar
Odeberg, J., Wolmer, N., Falci, S., Westgren, M., Seiger, A. and Soderberg-Naucler, C. (2006). Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. Journal of Virology 80, 89298939. doi: 10.1128/JVI.00676-06.Google Scholar
Oyadomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., Akira, S., Araki, E. and Mori, M. (2001). Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences USA 98, 1084510850. doi: 10.1073/pnas.191207498.Google Scholar
Oyadomari, S., Koizumi, A., Takeda, K., Gotoh, T., Akira, S., Araki, E. and Mori, M. (2002). Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. Journal of Clinical Investigation 109, 525532. doi: 10.1172/JCI14550.Google Scholar
Petersen, E. (2007). Toxoplasmosis. Seminars in Fetal & Neonatal Medicine 12, 214223.Google Scholar
Ponticelli, C. and Campise, M. R. (2005). Neurological complications in kidney transplant recipients. Journal of Nephrology 18, 521528.Google Scholar
Ron, D. and Habener, J. F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes and Development 6, 439453.Google Scholar
Sun, T., Wang, X. J., Xie, S. S., Zhang, D. L., Wang, X. P., Li, B. Q., Ma, W. and Xin, H. (2011). A comparison of proliferative capacity and passaging potential between neural stem and progenitor cells in adherent and neurosphere cultures. International Journal of Developmental Neuroscience 29, 723731. doi: 10.1016/j.ijdevneu.2011.05.012.Google Scholar
Sun, X., Guan, Y., Li, F., Li, X., Wang, X., Guan, Z., Sheng, K., Yu, L. and Liu, Z. (2012). Effects of rat cytomegalovirus on the nervous system of the early rat embryo. Virologica Sinica 27, 234240. doi: 10.1007/s12250-012-3250-0.Google Scholar
Takahashi, J., Fukuda, T., Tanaka, J., Minamitani, M., Onouchi, K. and Makioka, A. (2001). Bax-induced apoptosis not demonstrated in the congenital toxoplasmosis in mice. Brain & Development 23, 5053. doi:10.1016/S0387-7604(01)00179-6.Google Scholar
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258. doi: S0020-7519(00)00124-7.Google Scholar
Tsutsui, Y., Kosugi, I. and Kawasaki, H. (2005). Neuropathogenesis in cytomegalovirus infection: indication of the mechanisms using mouse models. Reviews in Medical Virology 15, 327345. doi: 10.1002/rmv.475.Google Scholar
Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P. and Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664666. doi: 10.1126/science.287.5453.664.CrossRefGoogle ScholarPubMed
Wang, X. Z., Lawson, B., Brewer, J. W., Zinszner, H., Sanjay, A., Mi, L. J., Boorstein, R., Kreibich, G., Hendershot, L. M. and Ron, D. (1996). Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Molecular and Cellular Biology 16, 42734280.Google Scholar
Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L. and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes and Development 12, 982995.Google Scholar