Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T07:08:18.534Z Has data issue: false hasContentIssue false

Toxoplasma gondii induces changes in intracellular calcium in macrophages

Published online by Cambridge University Press:  04 September 2007

K. S. MASEK
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Room 313, Hill Pavilion, 380 South University Avenue, University of Pennsylvania, Philadelphia, PA 19104, USA
P. ZHU
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Room 313, Hill Pavilion, 380 South University Avenue, University of Pennsylvania, Philadelphia, PA 19104, USA
B. D. FREEDMAN
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Room 313, Hill Pavilion, 380 South University Avenue, University of Pennsylvania, Philadelphia, PA 19104, USA
C. A. HUNTER*
Affiliation:
Department of Pathobiology, School of Veterinary Medicine, Room 313, Hill Pavilion, 380 South University Avenue, University of Pennsylvania, Philadelphia, PA 19104, USA
*
*Corresponding author. Tel: +215 573 7772. E-mail: chunter@vet.upenn.edu

Summary

Toxoplasma gondii is an obligate intracellular parasite that interacts with calcium storage organelles and induces calcium-dependent signalling in macrophages. This study was performed to determine whether Toxoplasma induces changes in intracellular calcium in these cells. Ratiometric imaging of live, Fura-2 loaded macrophages challenged with T. gondii revealed robust elevations in intracellular calcium. These elevations were late in onset, beginning 15–20 min after addition of parasites and occurred in up to 20% of macrophages in an imaging field. Further characterization of these events revealed that they follow from challenge with live T. gondii, but not heat-killed parasites or soluble Toxoplasma antigen (STAg). Parasite-induced calcium elevations derived from extracellular sources, and were independent of host recognition factors MyD88 and CCR5. These findings indicate that Toxoplasma gondii alters calcium homeostasis in macrophages and this activity is independent of known pathways involved in the innate recognition of this organism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliberti, J., Valenzuela, J. G., Carruthers, V. B., Hieny, S., Andersen, J., Charest, H., Reis E. Sousa, C., Fairlamb, A., Ribeiro, J. M. and Sher, A. (2003). Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature Immunology 4, 485490.CrossRefGoogle ScholarPubMed
Arrizabalaga, G. and Boothroyd, J. C. (2004). Role of calcium during Toxoplasma gondii invasion and egress. International Journal for Parasitology 34, 361368.CrossRefGoogle ScholarPubMed
Butcher, B. A., Greene, R. I., Henry, S. C., Annecharico, K. L., Weinberg, J. B., Denkers, E. Y., Sher, A. and Taylor, G. A. (2005). p47 GTPases regulate Toxoplasma gondii survival in activated macrophages. Infection and Immunity 73, 32783286.CrossRefGoogle ScholarPubMed
Caamano, J., Alexander, J., Craig, L., Bravo, R. and Hunter, C. A. (1999). The NF-kappa B family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. Journal of Immunology 163, 44534461.CrossRefGoogle ScholarPubMed
Collazo, C. M., Yap, G. S., Sempowski, G. D., Lusby, K. C., Tessarollo, L., Woude, G. F., Sher, A. and Taylor, G. A. (2001). Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. Journal of Experimental Medicine 194, 181188.CrossRefGoogle ScholarPubMed
Del Rio, L., Butcher, B. A., Bennouna, S., Hieny, S., Sher, A. and Denkers, E. Y. (2004). Toxoplasma gondii triggers myeloid differentiation factor 88-dependent IL-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors. Journal of Immunology 172, 69546960.CrossRefGoogle ScholarPubMed
Gelman, A. E., Zhang, J., Choi, Y. and Turka, L. A. (2004). Toll-like receptor ligands directly promote activated CD4+ T cell survival. Journal of Immunology 172, 60656073.CrossRefGoogle ScholarPubMed
Goebel, S., Luder, C. G. and Gross, U. (1999). Invasion by Toxoplasma gondii protects human-derived HL-60 cells from actinomycin D-induced apoptosis. Medical Microbiology and Immunology (Berlin) 187, 221226.CrossRefGoogle ScholarPubMed
Goebel, S., Luder, C. G., Lugert, R., Bohne, W. and Gross, U. (1998). Toxoplasma gondii inhibits the in vitro induced apoptosis of HL-60 cells. The Tokai Journal of Experimental and Clinical Medicine 23, 351356.Google ScholarPubMed
Goldfine, H. and Wadsworth, S. J. (2002). Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes and Infection 4, 13351343.CrossRefGoogle ScholarPubMed
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260, 34403450.CrossRefGoogle ScholarPubMed
Hajnoczky, G., Davies, E. and Madesh, M. (2003). Calcium signaling and apoptosis. Biochemical and Biophysical Research Communications 304, 445454.CrossRefGoogle ScholarPubMed
Jones, T. C. and Hirsch, J. G. (1972). The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. Journal of Experimental Medicine 136, 11731194.CrossRefGoogle ScholarPubMed
Kim, L. and Denkers, E. Y. (2006). Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. Journal of Cell Science 4, 25842591.Google Scholar
Lovett, J. L. and Sibley, L. D. (2003). Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. Journal of Cell Science 116, 30093016.CrossRefGoogle ScholarPubMed
Martens, S., Parvanova, I., Zerrahn, J., Griffiths, G., Schell, G., Reichmann, G. and Howard, J. C. (2005). Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-Resistance GTPases. PLoS Pathogens 1, e24.CrossRefGoogle ScholarPubMed
Masek, K. S., Fiore, J., Leitges, M., Yan, S. F., Freedman, B. and Hunter, C. A. (2006). Host cell calcium and PKC regulate innate recognition of Toxoplasma gondii. Journal of Cell Science 119, 45654573.CrossRefGoogle ScholarPubMed
Mordue, D. G., Hakansson, S., Niesman, I. and Sibley, L. D. (1999). Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Experimental Parasitology 92, 8799.CrossRefGoogle Scholar
Myers, J. T. and Swanson, J. A. (2002). Calcium spikes in activated macrophages during Fcgamma receptor-mediated phagocytosis. Journal of Leukocyte Biology 72, 677684.CrossRefGoogle ScholarPubMed
Nash, P. B., Purner, M. B., Leon, R. P., Clarke, P., Duke, R. C. and Curiel, T. J. (1998). Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. Journal of Immunology 160, 18241830.CrossRefGoogle ScholarPubMed
Payne, T. M., Molestina, R. E. and Sinai, A. P. (2003). Inhibition of caspase activation and a requirement for NF-kappaB function in the Toxoplasma gondii-mediated blockade of host apoptosis. Journal of Cell Science 116, 43454358.CrossRefGoogle Scholar
Pingret, L., Millot, J. M., Sharonov, S., Bonhomme, A., Manfait, M. and Pinon, J. M. (1996). Relationship between intracellular free calcium concentrations and the intracellular development of Toxoplasma gondii. Journal of Histochemistry and Cytochemistry 44, 11231129.CrossRefGoogle ScholarPubMed
Scanga, C. A., Aliberti, J., Jankovic, D., Tilloy, F., Bennouna, S., Denkers, E. Y., Medzhitov, R. and Sher, A. (2002). Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. Journal of Immunology 168, 59976001.CrossRefGoogle ScholarPubMed
Sharma, S. D., Mullenax, J., Araujo, F. G., Erlich, H. A. and Remington, J. S. (1983). Western blot analysis of the antigens of Toxoplasma gondii recognized by human IgM and IgG antibodies. Journal of Immunology 131, 977983.CrossRefGoogle ScholarPubMed
Sibley, L. D., Weidner, E. and Krahenbuhl, J. L. (1985). Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature, London 315, 416419.CrossRefGoogle ScholarPubMed
Sinai, A. P., Webster, P. and Joiner, K. A. (1997). Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. Journal of Cell Science 110, 21172128.CrossRefGoogle ScholarPubMed
Suss-Toby, E., Zimmerberg, J. and Ward, G. E. (1996). Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proceedings of the National Academy of Sciences, USA 93, 84138418.CrossRefGoogle Scholar
Taylor, G. A., Collazo, C. M., Yap, G. S., Nguyen, K., Gregorio, T. A., Taylor, L. S., Eagleson, B., Secrest, L., Southon, E. A., Reid, S. W., Tessarollo, L., Bray, M., McVicar, D. W., Komschlies, K. L., Young, H. A., Biron, C. A., Sher, A. and Vande Woude, G. F. (2000). Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. Proceedings of the National Academy of Sciences, USA 97, 751755.CrossRefGoogle ScholarPubMed
Vieira, M. C. and Moreno, S. N. (2000). Mobilization of intracellular calcium upon attachment of Toxoplasma gondii tachyzoites to human fibroblasts is required for invasion. Molecular and Biochemical Parasitology 106, 157162.CrossRefGoogle ScholarPubMed
Yarovinsky, F., Zhang, D., Andersen, J. F., Bannenberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghosh, S. and Sher, A. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 16261629.CrossRefGoogle ScholarPubMed