Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:21:10.954Z Has data issue: false hasContentIssue false

Toxoplasma gondii major surface antigen (SAG1): in vitro analysis of host cell binding

Published online by Cambridge University Press:  16 April 2004

S. A. ROBINSON
Affiliation:
School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
J. E. SMITH
Affiliation:
School of Biology, University of Leeds, Leeds LS2 9JT, UK
P. A. MILLNER
Affiliation:
School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

Abstract

Previous studies have indicated that SAG1, the major surface molecule of the protozoan parasite Toxoplasma gondii, is an important attachment ligand for the host cell. However, the research data that supports this claim comes largely from studies investigating tachyzoite binding, and not SAG1 binding per se. In this study we successfully developed an in vitro attachment assay to directly evaluate the mechanism of SAG1-host cell binding. Competition experiments were then performed using SAG1 that had been pre-treated with the neoglycoprotein BSA-glucosamide or with antibody. Soluble BSA-glucosamide blocked SAG1 attachment to MDBK cells in a dose-dependent manner, implying that SAG1 binding is mediated, in part, via attachment to host cell surface glucosamine. Interestingly, pre-incubation of SAG1 in polyclonal sera from chronically infected mice failed to block binding. This challenges the assumption that anti-SAG1 antibodies block parasite attachment through the masking of SAG1 host cell binding domains. Taken together, this evidence presents new strategies for understanding SAG1-mediated attachment.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BRECHT, S., CARRUTHERS, V. B., FERGUSON, D. J., GIDDINGS, O. K., WANG, G., JAKLE, U., HARPER, J. M., SIBLEY, L. D. & SOLDATI, D. (2001). The Toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. Journal of Biological Chemistry 276, 41194127.CrossRefGoogle Scholar
BURG, J. L., PERELMAN, D., KASPER, L. H., WARE, P. L. & BOOTHROYD, J. C. (1988). Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. Journal of Immunology 141, 35843593.Google Scholar
CARRUTHERS, V. B., HAKANSSON, S., GIDDINGS, O. K. & SIBLEY, L. D. (2000). Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infection and Immunity 68, 40054011.CrossRefGoogle Scholar
CHANNON, J. Y., SUH, E. I., SEGUIN, R. M. & KASPER, L. H. (1999). Attachment ligands of viable Toxoplasma gondii induce soluble immunosuppressive factors in human monocytes. Infection and Immunity 67, 25472551.Google Scholar
DZIERSZINSKI, F., MORTUAIRE, M., CESBRON-DELAUW, M. F. & TOMAVO, S. (2000). Targeted disruption of the glycosylphosphatidylinositol-anchored surface antigen SAG3 gene in Toxoplasma gondii decreases host cell adhesion and drastically reduces virulence in mice. Molecular Microbiology 37, 574582.CrossRefGoogle Scholar
FOURMAUX, M. N., ACHBAROU, A. & MERCEREAU-PUIJALON, O., BIDERRE, C., BRICHE, I., LOYENS, A., ODBERG-FERRAGUT, C., CAMUS, D. & DUBREMETZ, J. F. (1996). The MIC1 microneme protein of Toxoplasma gondii contains a duplicated receptor-like domain and binds to host cell surface. Molecular and Biochemical Parasitology 83, 201210.CrossRefGoogle Scholar
GARCIA-RÉGUET, N., LEBRUN, M., FOURMAUX, M. N., MERCEREAU-PUIJALON, O., MANN, T., BECKERS, C. J., SAMYN, B., VAN BEEUMEN, J., BOUT, D. & DUBREMETZ, J. F. (2000). The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cellular Microbiology 2, 353364.CrossRefGoogle Scholar
GRIMWOOD, J. & SMITH, J. E. (1992). Toxoplasma gondii: The role of a 30 kDa surface protein in host cell invasion. Experimental Parasitology 74, 106111.CrossRefGoogle Scholar
GRIMWOOD, J. & SMITH, J. E. (1996). Toxoplasma gondii: The role of parasite and secreted proteins in host cell invasion. International Journal for Parasitology 2, 169173.CrossRefGoogle Scholar
HE, X. L., GRIGG, M. E., BOOTHROYD, J. C. & GARCIA, K. C. (2002). Structure of the immunodominant surface antigen from Toxoplasma gondii SRS superfamily. Nature, Structural Biology 9, 606611.CrossRefGoogle Scholar
HEUKESHOVEN, J. & DERNICK, R. (1988). Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9, 2832.Google Scholar
JACKSON, M. H. & HUTCHINSON, W. M. (1989). The prevalence and source of Toxoplasma infection in the community. Advances in Parasitology 91, 237249.Google Scholar
JACQUET, A., COULON, L., DE NEVE, J., DAMINET, V., HAUMONT, M., GARCIA, L., BOLLEN, A., JURADO, M. & BIEMANS, R. (2001). The surface antigen SAG3 mediates the attachment of Toxoplasma gondii to cell-surface proteoglycans. Molecular and Biochemical Parasitology 116, 3544.CrossRefGoogle Scholar
KASPER, L. H., CRABB, J. H. & PFEFFERKORN, E. R. (1983). Purification of a major membrane protein of Toxoplasma gondii by immuno-adsorption with a monoclonal antibody. Journal of Immunology 130, 24072412.Google Scholar
LAEMMLI, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle Scholar
LOURENCO, E. V., PERIERA, S. R., FAÇA, V. M., COELHO-CASTELO, A. A. M., MINEO, J. R., ROQUE-BARREIRA, M.-C., GREENE, L. J. & CASTEOL-PANUNTO, A. (2001). Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology 11, 541547.CrossRefGoogle Scholar
LUFT, B. F. & REMINGTON, J. S. (1992). Toxoplasmic encephalitis in AIDS. Clinical Infection and Disease 15, 211222.CrossRefGoogle Scholar
MADIN, S. H. & DARBY, N. B. (1958). Established kidney cell lines of normal adult bovine and ovine origin. Proceedings of the Society of Experimental Biology and Medicine 98, 574576.CrossRefGoogle Scholar
MILLER, N. L., FRENKEL, J. K. & DUBEY, J. P. (1972). Oral infections with Toxoplasma cysts and oocysts in felines, other mammals, and in birds. Journal of Parasitology 58, 928937.CrossRefGoogle Scholar
MINEO, J. R. & KASPER, L. H. (1994). Attachment of Toxoplasma gondii to host cells involves major surface protein, SAG1-1 (P30). Experimental Parasitology 79, 351361.CrossRefGoogle Scholar
MINEO, J. R., McLEOD, R., MACK, D., SMITH, J. E., KHAN, I. A., ELY, K. H. & KASPER, L. H. (1993). Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection. Journal of Immunology 150, 39513964.Google Scholar
NAGEL, S. D. & BOOTHROYD, J. C. (1989). The major surface antigen of Toxoplasma gondii is anchored by a glycolipid. Journal of Biological Chemistry 264, 55695574.Google Scholar
ORTEGA-BARRIA, E. & BOOTHROYD, J. C. (1999). A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. Journal of Biological Chemistry 274, 12671276.CrossRefGoogle Scholar
REISS, M., VIEBIG, N., BRECHT, S., FOURMAUX, M-F., SOÈTE, M., DI CRISTINA, M., DUBREMETZ, J. F. & SOLDATI, D. (2001). Identification and characterisation of an escorter for two secretory adhesions in Toxoplasma gondii. Journal of Cell Biology 152, 563578.CrossRefGoogle Scholar
STRIEPEN, B., ZINECKER, C. F., DAMM, J. B. L., MELGERS, P. A., GERWIG, G. J., KOOLEN, M., VLIEGENTHART, J. F., DUBREMETZ, J. F. & SCHWARTZ, T. T. (1997). Structure of low molecular weight antigen of Toxoplasma gondii: a glucose alpha-1-4 N-actelgalactosamine makes free glycosyl-phosphatidylinositols highly immunogenic. Journal of Molecular Biology 266, 797813.CrossRefGoogle Scholar
TOWBIN, H., STAEHELIN, T. & GORDON, J. (1978). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 43504354.Google Scholar
VELGE-ROUSEL, F., DIMIER-POISSON, I., BUZONI-GATEL, D. & BOUT, D. (2001). Anti-SAG1 peptide antibodies inhibit the penetration of Toxoplasma gondii tachyzoites into enterocyte cell lines. Parasitology 123, 225233.CrossRefGoogle Scholar