Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T21:46:58.487Z Has data issue: false hasContentIssue false

Trypanosoma irwini n. sp (Sarcomastigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus)

Published online by Cambridge University Press:  02 July 2009

L. M. McINNES*
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth6150, Western Australia
A. GILLETT
Affiliation:
The Australian Wildlife Hospital, Beerwah, Queensland, Australia
U. M. RYAN
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth6150, Western Australia
J. AUSTEN
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth6150, Western Australia
R. S. F. CAMPBELL
Affiliation:
School of Veterinary Science, James Cook University, Townsville, Queensland4811, Australia
J. HANGER
Affiliation:
The Australian Wildlife Hospital, Beerwah, Queensland, Australia
S. A. REID
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth6150, Western Australia
*
*Corresponding author: Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth6150, Western Australia. Tel: +61 893 602495. Fax: +61 893 104144. E-mail: L.Mcinnes@murdoch.edu.au

Summary

The morphology and genetic characterization of a new species of trypanosome infecting koalas (Phascolarctos cinereus) are described. Morphological analysis of bloodstream forms and phylogenetic analysis at the 18S rDNA and gGAPDH loci demonstrated this trypanosome species to be genetically distinct and most similar to Trypanosoma bennetti, an avian trypanosome with a genetic distance of 0·9% at the 18S rDNA and 10·7% at the gGAPDH locus. The trypanosome was detected by 18S rDNA PCR in the blood samples of 26 out of 68 (38·2%) koalas studied. The aetiological role of trypanosomes in koala disease is currently poorly defined, although infection with these parasites has been associated with severe clinical signs in a number of koalas. Based on biological and genetic characterization data, this trypanosome species infecting koalas is proposed to be a new species Trypanosome irwini n. sp.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anisimova, M. and Gascuel, O. (2006). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biology 55, 539552.CrossRefGoogle Scholar
Austen, J., Jefferies, R., Friend, T., Adams, P., Ryan, U. and Reid, S. (2009). Morphological and molecular characterization of Trypanosoma copemani n.sp. (Trypanosomatidae) isolated from Gilbert's potoroo (Potorous gilbertii) and quokka (Setonix brachyurus). Parasitology 136, (in the Press).CrossRefGoogle ScholarPubMed
Bettiol, S. S., Goldsmid, J. M., Le, D. D. and Driessen, M. (1996). The first record of a member of the genus Hepatozoon in the eastern barred bandicoot (Perameles gunnii) in Tasmania. Journal of Parasitology 82, 829830.CrossRefGoogle ScholarPubMed
Bettiol, S. S., Jakes, K., Le, D. D., Goldsmid, J. M. and Hocking, G. (1998). First record of trypanosomes in Tasmanian bandicoots. Journal of Parasitology 84, 538541.CrossRefGoogle ScholarPubMed
Dargantes, A. P., Campbell, R. S. F., Copeman, D. B. and Reid, S. A. (2005). Experimental Trypanosoma evansi infection in the goat. II. Pathology. Journal of Comparative Pathology 133, 267276.CrossRefGoogle ScholarPubMed
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M. and Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36, W465–469.CrossRefGoogle ScholarPubMed
El Kady, G. A. (1998). Protozoal parasites in tick species infesting camels in Sinai Peninsula. Journal of the Egyptian Society of Parasitology 28, 765776.Google ScholarPubMed
Hamilton, P. B., Gibson, W. C. and Stevens, J. R. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular and Phylogenetic Evolution 44, 1525.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. and Gibson, W. C. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology 34, 13931404.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gidley, J., Holz, P. and Gibson, W. C. (2005). A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae). International Journal for Parasitology 35, 431443.CrossRefGoogle ScholarPubMed
Hanger, J. J., Bromham, L. D., McKee, J. J., O'brien, T. M. and Robinson, W. F. (2000). The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. Journal of Virolology 74, 42644272.CrossRefGoogle ScholarPubMed
Hanger, J. J., Mckee, J. J., Tarlington, R. and Yates, A. (2003). Cancer and haemotological disease in koalas: A clinical and virological update. In Annual Conference of the Australian Veterinary Association, pp. 1930. Australian Association of Veterinary Conservation Biology Section, Cairns, Australia.Google Scholar
Hatama, S., Shibahara, T., Suzuki, M., Kadota, K., Uchida, I. and Kanno, T. (2007). Isolation of a Megatrypanum trypanosome from sika deer (Cervus nippon yesoensis) in Japan. Veterinary Parasitology 149, 5664.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals. A Zoological Monograph. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Jackson, S., Reid, K., Spittal, D. and Romer, L. (2003). Koalas. In Australian Mammals: Biology and Captive Management (ed. Jackson, S.), pp. 145181. CSIRO Publishing, Collingwood, Australia.Google Scholar
Kirkpatrick, C. E. and Terway-Thompson, C. A. (1986). Biochemical characterization of some raptor trypanosomes. II. Enzyme studies, with a description of Trypanosoma bennetti n. sp. Canadian Journal of Zoology 64, 195203.CrossRefGoogle Scholar
Latif, A. A., Bakheit, M. A., Mohamed, A. E. and Zweygarth, E. (2004). High infection rates of the tick Hyalomma anatolicum anatolicum with Trypanosoma theileri. Onderstepoort Journal of Veterinary Research 71, 251256.CrossRefGoogle ScholarPubMed
Mackerras, M. (1959). The haematozoa of Australian mammals. Australian Journal of Zoology 7, 105135.CrossRefGoogle Scholar
Mackerras, M. and Mackerras, I. (1960). The haematozoa of Australian birds. Australian Journal of Zoology 8, 226260.CrossRefGoogle Scholar
Maslov, D. A., Lukes, J., Jirku, M. and Simpson, L. (1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology 75, 197205.CrossRefGoogle ScholarPubMed
McMillan, B. and Bancroft, B. (1974). On the morphology of Trypanosoma binneyi Mackerras, 1959 from the platypus Ornithorhyncus anatinus. International Journal for Parasitology 4, 441442.CrossRefGoogle Scholar
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.CrossRefGoogle ScholarPubMed
Osborne, M. J., Christidis, L. and Norman, J. A. (2002). Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies). Molecular Phylogenetics and Evolution 25, 219228.CrossRefGoogle ScholarPubMed
Sato, H., Leo, N., Katakai, Y., Takano, J. I., Akari, H., Nakamura, S. I. and Une, Y. (2008). Prevalence and molecular phylogenetic characterization of Trypanosoma (Megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. Journal of Parasitology 94, 11281138.CrossRefGoogle ScholarPubMed
Schnittger, L., Yin, H., Gubbels, M. J., Beyer, D., Niemann, S., Jongejan, F. and Ahmed, J. S. (2003). Phylogeny of sheep and goat Theileria and Babesia parasites. Parasitology Research 91, 398406.Google ScholarPubMed
Sehgal, R. N., Jones, H. I. and Smith, T. B. (2001). Host specificity and incidence of Trypanosoma in some African rainforest birds: a molecular approach. Molecular Ecology 10, 23192327.CrossRefGoogle ScholarPubMed
Smith, A., Clark, P., Averis, S., Lymbery, A. J., Wayne, A. F., Morris, K. D. and Thompson, R. C. (2008). Trypanosomes in a declining species of threatened Australian marsupial, the brush-tailed bettong Bettongia penicillata (Marsupialia: Potoroidae). Parasitology 135, 13291335.CrossRefGoogle Scholar
Stevens, J. and Rambaut, A. (2001). Evolutionary rate differences in trypanosomes. Infection, Genetics and Evolution 1, 143150.CrossRefGoogle ScholarPubMed
Stevens, J. R., Noyes, H. A., Schofield, C. J. and Gibson, W. (2001). The molecular evolution of Trypanosomatidae. Advances in Parasitology 48, 156.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Tarlinton, R., Meers, J., Hanger, J. and Young, P. (2005). Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. Journal of General Virology 86, 783787.CrossRefGoogle ScholarPubMed
Thekisoe, O. M., Honda, T., Fujita, H., Battsetseg, B., Hatta, T., Fujisaki, K., Sugimoto, C. and Inoue, N. (2007). A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 134, 967974.CrossRefGoogle ScholarPubMed
Viola, L. B., Almeida, R. S., Ferreira, R. C., Campaner, M., Takata, C. S., Rodrigues, A. C., Paiva, F., Camargo, E. P. and Teixeira, M. M. (2009). Evolutionary history of trypanosomes from South American caiman (Caiman yacare) and African crocodiles inferred by phylogenetic analyses using SSU rDNA and gGAPDH genes. Parasitology 136, 5565.CrossRefGoogle ScholarPubMed
Votypka, J., Lukes, J. and Obornik, M. (2004). Phylogenetic relationship of Trypanosoma corvi with other avian trypanosomes. Acta Protozoologica 43, 225231.Google Scholar
Ziccardi, M. and Lourenco-De-Oliveira, R. (1999). Polymorphism in trypomastigotes of Trypanosoma (Megatrypanum) minasense in the blood of experimentally infected squirrel monkey and marmosets. Memorias do Instituto Oswaldo Cruz 94, 649653.CrossRefGoogle ScholarPubMed
Ziccardi, M., Lourenco De Oliveira, R. and Nogueira, R. (1996). The haemoculture of Trypanosoma minasense Chagas, 1908. Memorias do Instituto Oswaldo Cruz 91, 501505.CrossRefGoogle ScholarPubMed