Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T10:38:48.807Z Has data issue: false hasContentIssue false

Unravelling causality from correlations: revealing the impacts of endemic ectoparasites on a protected species (tuatara)

Published online by Cambridge University Press:  16 October 2009

STEPHANIE S. GODFREY*
Affiliation:
School of Biological Sciences, Flinders University, Adelaide 5001, Australia
JENNIFER A. MOORE
Affiliation:
Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, New Zealand
NICOLA J. NELSON
Affiliation:
Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, New Zealand
C. MICHAEL BULL
Affiliation:
School of Biological Sciences, Flinders University, Adelaide 5001, Australia
*
*Corresponding author: School of Biological Sciences, Flinders University, PO Box 2100, Adelaide 5001, SA, Australia. Tel: +61 8 8201 2805. Fax: +61 8 8201 3015. E-mail: Stephanie.Godfrey@flinders.edu.au

Summary

Understanding the impacts of endemic parasites on protected hosts is an essential element of conservation management. However, where manipulative experiments are unethical, causality cannot be inferred from observational correlative studies. Instead, we used an experimental structure to explore temporal associations between body condition of a protected reptile, the tuatara (Sphenodon punctatus) and infestation with ectoparasites (ticks and mites). We surveyed tuatara in a mark-recapture study on Stephens Island (New Zealand), which encompassed the pre-peak, peak and post-peak infestation periods for each ectoparasite. Tick loads during the peak infestation period were negatively related to body condition of tuatara. Body condition before the peak was not related to subsequent infestation rates; however, tick loads in the peak were negatively related to subsequent changes in body condition. Mite loads during the peak infestation period were not correlated with body condition of tuatara. Body condition before the peak had no effect on subsequent mite infestation rates, but mite loads of small males during the peak were negatively related to subsequent changes in body condition. Our results suggest that both ectoparasites reduce the body condition of tuatara, which has implications for the long-term conservation management of this host and its parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altizer, S., Harvell, D. and Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution 18, 589596.CrossRefGoogle Scholar
Amo, L., Lopez, P. and Martin, J. (2004). Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola. Parasitology Research 94, 290294.CrossRefGoogle Scholar
Appleby, B. M., Anwar, M. A. and Petty, S. J. (1999). Short-term and long-term effects of food supply on parasite burdens in Tawny Owls, Strix aluco. Functional Ecology 13, 315321.CrossRefGoogle Scholar
Barnes, T. S., Hinds, L. A., Jenkins, D. J. and Coleman, G. T. (2007). Precocious development of hydatid cysts in a macropodid host. International Journal for Parasitology 37, 13791389.CrossRefGoogle Scholar
Beldomenico, P. M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. and Begon, M. (2008). Poor condition and infection: a vicious circle in natural populations. Proceedings of the Royal Society of London, B 275, 17531759.Google Scholar
Birkhead, T. R., Pellatt, E. J., Matthews, I. M., Roddis, N. J., Hunter, F. M., McPhie, F. and Castillo-Juarez, H. (2006). Genic capture and the genetic basis of sexually selected traits in the zebra finch. Evolution 60, 23892398.Google Scholar
Bull, C. M. and Burzacott, D. (2006). The influence of parasites on the retention of long-term partnerships in the Australian sleepy lizard, Tiliqua rugosa. Oecologia 146, 675680.Google Scholar
Bunbury, N., Barton, E., Jones, C. G., Greenwood, A. G., Tyler, K. M. and Bell, D. J. (2007). Avian blood parasites in an endangered columbid: Leucocytozoon marchouxi in the Mauritian Pink Pigeon Columba mayeri. Parasitology 134, 797804.CrossRefGoogle Scholar
Bunbury, N., Jones, C. G., Greenwood, A. G. and Bell, D. J. (2008). Epidemiology and conservation implications of Trichomonas gallinae infection in the endangered Mauritian pink pigeon. Biological Conservation 141, 153161.Google Scholar
Burnham, D. K., Keall, S. N., Nelson, N. J. and Daugherty, C. H. (2006). Effects of sampling date, gender, and tick burden on peripheral blood cells of captive and wild tuatara (Sphenodon punctatus). New Zealand Journal of Zoology 33, 241248.Google Scholar
Burthe, S., Bennett, M., Kipar, A., Lambin, X., Smith, A., Telfer, S. and Begon, M. (2008). Tuberculosis (Mycobacterium microti) in wild field vole populations. Parasitology 135, 309317.Google Scholar
Clobert, J., Oppliger, A., Sorci, G., Ernande, B., Swallow, J. G. and Garland, T. (2000). Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, Lacerta vivipara. Functional Ecology 14, 675684.Google Scholar
Connolly, J. D. and Cree, A. (2008). Risks of a late start to captive management for conservation: phenotypic differences between wild and captive individuals of a viviparous endangered skink (Oligosoma otagense). Biological Conservation 141, 12831292.CrossRefGoogle Scholar
Cox, R. M. and John-Alder, H. B. (2007). Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Functional Ecology 21, 327334.CrossRefGoogle Scholar
Cree, A., Cockrem, J. F. and Guilette, L. J. J. (1992). Reproductive cycles of male and female tuatara (Sphenodon punctatus) on Stephens Island, New Zealand. Journal of Zoology 226, 199217.CrossRefGoogle Scholar
Dawson, R. D. and Bortolotti, G. R. (2001). Sex-specific associations between reproductive output and hematozoan parasites of American kestrels. Oecologia 126, 193200.CrossRefGoogle ScholarPubMed
Derting, T. L. and Compton, S. (2003). Immune response, not immune maintenance, is energetically costly in wild white-footed mice (Peromyscus leucopus). Physical and Biochemical Zoology 76, 744752.Google Scholar
Dumbleton, L. J. (1943). A new tick from the tuatara (Sphenodon punctatus). New Zealand Journal of Science and Technology 24, 185b190b.Google Scholar
Fenner, A. and Bull, C. M. (2008). The impact of nematode parasites on the behaviour of an Australian lizard, the gidgee skink Egernia stokesii. Ecological Research 23, 897903.Google Scholar
Freckleton, R. P. (2002). On the misuse of residuals in ecology: regression of residuals vs. multiple regression. Journal of Animal Ecology 71, 542545.Google Scholar
Gaze, P. (2001). Tuatara Recovery Plan: 2001–2011. DoC Biodiversity Recovery Unit.Google Scholar
Godfrey, S. S., Bull, C. M. and Nelson, N. J. (2008). Seasonal and spatial dynamics of ectoparasite infestation of a threatened reptile, the tuatara (Sphenodon punctatus). Medical and Veterinary Entomology 22, 374385.CrossRefGoogle ScholarPubMed
Goff, M. L., Loomis, R. B. and Ainsworth, R. (1987). Redescription of Neotrombicula naultini (Dumbleton, 1947) and descriptions of two new species of chiggers from New Zealand (Acari: Trombiculidae). New Zealand Journal of Zoology 14, 385390.Google Scholar
Green, A. J. (2001). Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82, 14731483.CrossRefGoogle Scholar
Hart, B. L., Hart, L. A., Mooring, M. S. and Olubayo, R. (1992). Biological basis of grooming behaviour in antelope: the body-size, vigilance and habitat principles. Animal Behaviour 44, 615631.Google Scholar
Hawlena, H., Khokhlova, I. S., Abramsky, Z. and Krasnov, B. R. (2006). Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology 133, 187193.CrossRefGoogle Scholar
Hay, J. M., Sarre, S. D., Lambert, D. M., Allendorf, F. W. and Daugherty, C. H. (2009). Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conservation Genetics (in the Press) doi: 10.1007/s10592-009-9952-7Google Scholar
Heath, A. C. G. (2006). A reptile tick, Aponomma sphenodonti Dumbleton (Acari: Ixodidae), parasitic on the tuatara, Sphenodon punctatus Gray (Reptilia: Rhyncocephalia), in New Zealand: observations on its life history and biology. Systematic and Applied Acarology 11, 312.CrossRefGoogle Scholar
Herd, R. (1995). Endectocidal drugs: ecological risks and counter-measures. International Journal for Parasitology 25, 875885.Google Scholar
Hoare, J. M., Pledger, S., Keall, S. N., Nelson, N. J., Mitchell, N. J. and Daugherty, C. H. (2006). Conservation implications of a long-term decline in body condition of the Brothers Island tuatara (Sphenodon punctatus). Animal Conservation 9, 456462.Google Scholar
Hoodless, A. N., Kurtenbach, K., Nuttall, P. A. and Randolph, S. E. (2002). The impact of ticks on pheasant territoriality. Oikos 96, 245250.CrossRefGoogle Scholar
Hunter, R. P. and Isaza, R. (2008). Concepts and issues with interspecies scaling in zoological pharmacology. Journal of Zoo and Wildlife Medicine 39, 517526.Google Scholar
Irvine, R. J., Corbishley, H., Pilkington, J. G. and Albon, S. D. (2006). Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus). Parasitology 133, 465475.Google Scholar
Klompen, H., Dobson, S. J. and Barker, S. C. (2002). A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch, 1844. Systematic Parasitology 53, 101107.CrossRefGoogle ScholarPubMed
Klukowski, M. and Nelson, C. E. (2001). Ectoparasite loads in free-ranging northern fence lizards, Sceloporus undulatus hyacinthinus: effects of testosterone and sex. Behavioral Ecology and Sociobiology 49, 289295.Google Scholar
Kutz, S. J., Hoberg, E. P., Polley, L. and Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society of London, B 272, 25712576.Google Scholar
Lafferty, K. D. and Kuris, A. M. (1999). How environmental stress affects the impacts of parasites. Limnology and Oceanography 44, 925931.Google Scholar
Lebas, N. R. and Marshall, N. J. (2001). No evidence of female choice for a condition-dependent trait in the agamid lizard, Ctenophorus ornatus. Behaviour 138, 965980.CrossRefGoogle Scholar
Lello, J., Boag, B. and Hudson, P. J. (2005). The effect of single and concomitant pathogen infections on condition and fecundity of the wild rabbit (Oryctolagus cuniculus). International Journal for Parasitology 35, 15091515.Google Scholar
Lourenco, S. I. and Palmeirim, J. M. (2007). Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. Journal of Zoology 273, 161168.CrossRefGoogle Scholar
Main, A. and Bull, C. M. (2000). The impact of tick parasites on the behaviour of the lizard Tiliqua rugosa. Oecologia 122, 574581.Google Scholar
McCallum, H. and Dobson, A. (1995). Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution 10, 190194.Google Scholar
McKenzie, K. L. (2007). Returning tuatara (Sphenodon punctatus) to the New Zealand mainland. M.Sc. thesis, Victoria University of Wellington, Wellington, New Zealand.Google Scholar
Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proceedings of the Royal of London, B, 267, 25052510.Google Scholar
Millán, J., Gortazar, C., Martín-Mateo, M. P. and Villafuerte, R. (2004). Comparative survey of the ectoparasite fauna of wild and farm-reared red-legged partridges (Alectoris rufa), with an ecological study in wild populations. Parasitology Research 93, 7985.CrossRefGoogle ScholarPubMed
Mitchell, N. J., Allendorf, F. W., Keall, S. N., Daugherty, C. H. and Nelson, N. J. (2009). Demographic effects of temperature-dependent sex determination: will tuatara survive global warming? Global Change Biology (in the Press) doi: 10.111/j.1365-2486.2009.01964.xGoogle Scholar
Moore, J. A., Daugherty, C. H., Godfrey, S. S. and Nelson, N. J. (2009). Seasonal monogamy and multiple paternity in a wild population of a territorial reptile (tuatara). Biological Journal of the Linnean Society 98, 161170.Google Scholar
Moore, J. A., Hoare, J. M., Daugherty, C. H. and Nelson, N. J. (2007). Waiting reveals waning weight: Monitoring over 54 years shows a decline in body condition of a long-lived reptile (tuatara, Sphenodon punctatus). Biological Conservation 135, 181188.CrossRefGoogle Scholar
Moore, J. A., Nelson, N. J., Keall, S. N. and Daugherty, C. H. (2008). Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conservation Genetics 9, 12431251.Google Scholar
Mooring, M. S. and Hart, B. L. (1997). Self grooming in impala mothers and lambs: testing the body size and tick challenge principles. Animal Behaviour 53, 925934.CrossRefGoogle Scholar
Murray, D. L. (2002). Differential body condition and vulnerability to predation in snowshoe hares. Journal of Animal Ecology 71, 614625.CrossRefGoogle Scholar
Navarro, C., Marzal, A., De Lope, F. and Moller, A. P. (2003). Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101, 291298.Google Scholar
Needham, G. R. and Teel, P. D. (1991). Off-host physiological ecology of ixodid ticks. Annual Review of Entomology 36, 659681.CrossRefGoogle ScholarPubMed
Neiffer, D. L., Lydick, D. L., Burks, K. and Doherty, D. (2005). Hematologic and plasma biochemical changes associated with fenbendazole administration in Hermann's tortoises (Testudo hermanni). Journal of Zoo and Wildlife Medicine 36, 661672.CrossRefGoogle ScholarPubMed
Nelson, N. J., Keall, S. N., Brown, D. and Daugherty, C. H. (2002). Establishing a new wild population of tuatara (Sphenodon guntheri). Conservation Biology 16, 887894.Google Scholar
Neuhaus, P. (2003). Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus). Proceedings of the Royal Society of London, B, 270 (Suppl.) S213S215.Google Scholar
Oliver, J. H. (1989). Biology and systematics of ticks (Acari:Ixodida). Annual Review of Ecology and Systematics 20, 397430.Google Scholar
Platenberg, R. J. and Griffiths, R. A. (1999). Translocation of slow-worms (Anguis fragilis) as a mitigation strategy: a case study from south-east England. Biological Conservation 90, 125132.Google Scholar
Püttker, T., Meyer-Lucht, Y. and Sommer, S. (2008). Effects of fragmentation on parasite burden (nematodes) of generalist and specialist small mammal species in secondary forest fragments of the coastal Atlantic Forest, Brazil. Ecological Research 23, 207215.CrossRefGoogle Scholar
R Core Development Team (2007). R: A Language and Environment for Statistical Computing. Vienna, Austria. http://www.R-project.orgGoogle Scholar
Robb, L. A., Martin, K. and Hannon, S. J. (1992). Spring body condition, fecundity and survival in female willow ptarmigan. Journal of Animal Ecology 61, 215223.Google Scholar
Roberts, M. L., Buchanan, K. L. and Evans, M. R. (2004). Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behaviour 68, 227239.Google Scholar
Ruffell, J. (2005). The use of translocation as a tool in tuatara (Sphenodon spp.) conservation and relationships between the tuatara and the tick Aponomma sphenodonti. M.Sc. Thesis, University of Auckland, Auckland, New Zealand.Google Scholar
Sasa, M. (1961). Biology of chiggers. Annual Review of Entomology 6, 221244.Google Scholar
Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. and Hickling, G. J. (2005). Restitution of mass-size residuals: validating body condition indices. Ecology 86, 155163.Google Scholar
Smith, K. F., Acevedo-Whitehouse, K. and Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation 12, 112.Google Scholar
Spratt, D. M. (1997). Endoparasite control strategies: implications for biodiversity of native fauna. International Journal for Parasitology 27, 173180.Google Scholar
Stevenson, R. D. and Woods, W. A. Jr. (2006). Condition indices for conservation: new uses for evolving tools. Integrative and Comparative Biology 46, 11691190.CrossRefGoogle ScholarPubMed
Széll, Z., Sréter, T. and Varga, I. (2001). Ivermectin toxicosis in a chameleon (Chamaeleo senegalensis) infected with Foleyella furcata. Journal of Zoo and Wildlife Medicine 32, 115117.Google Scholar
Thompson, J. N. (1996). Evolutionary ecology and the conservation of biodiversity. Trends in Ecology and Evolution 11, 300303.Google Scholar
Tomas, G., Merino, S., Moreno, J. and Morales, J. (2007). Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Animal Behaviour 73, 805814.Google Scholar
Ujvari, B. and Madsen, T. (2005). Age, parasites, and condition affect humoral immune response in tropical pythons. Behavioral Ecology 17, 2024.CrossRefGoogle Scholar
Valera, F., Hoi, H. and Kristin, A. (2006). Parasite pressure and its effects on blood parameters in a stable and dense population of the endangered Lesser grey shrike. Biodiversity and Conservation 15, 21872195.CrossRefGoogle Scholar
Walls, G. Y. (1981). Feeding ecology of the tuatara Sphenodon punctatus on Stephens Island, Cook Strait. New Zealand Journal of Zoology 4, 8997.Google Scholar
Walls, G. Y. (1983). Activity of the tuatara and its relationships to weather conditions on Stephens Island, Cook Strait, with observations on geckos and invertebrates. New Zealand Journal of Zoology 10, 309318.Google Scholar
Wauters, L. A., Vermeulen, M., Van Dongen, S., Bertolino, S., Molinari, A., Tosi, G. and Matthysen, E. (2007). Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 5165.Google Scholar
Wharton, G. W. (1952). A Manual of the Chiggers. Entomological Society of Washington, Washington DC, USA.Google Scholar
Zhang, J. S., Daszak, P., Huang, H. L., Yang, G. Y., Kilpatrick, A. M. and Zhang, S. (2008). Parasite threat to panda conservation. Ecohealth 5, 69.CrossRefGoogle ScholarPubMed