Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:11:20.986Z Has data issue: false hasContentIssue false

Whole genome amplification (WGA) for archiving and genotyping of clinical isolates of Cryptosporidium species

Published online by Cambridge University Press:  21 September 2009

MAHA BOUZID
Affiliation:
Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
DARREN HEAVENS
Affiliation:
Genome Lab, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
KRISTIN ELWIN
Affiliation:
UK Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea SA2 8QA, UK
RACHEL M. CHALMERS
Affiliation:
UK Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea SA2 8QA, UK
STEPHEN J. HADFIELD
Affiliation:
UK Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea SA2 8QA, UK
PAUL R. HUNTER
Affiliation:
Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
KEVIN M. TYLER*
Affiliation:
Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
*
*Corresponding author: Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK. Tel: +44 (0) 1603 591225. Fax: +44 (0) 1603 591750. E-mail: k.tyler@uea.ac.uk

Summary

Clinical and environmental isolates of pathogens are often unique and may be unculturable, yielding a very limited amount of DNA for genetic studies. Cryptosporidium in particular are difficult to propagate. Whole genome amplification (WGA) is a valuable technique for amplifying genomic material. In this study, we tested 5 WGA commercial kits using Cryptosporidium clinical isolates. DNA of 5 C. hominis and 5 C. parvum clinical isolates and C. parvum IOWA reference strain were used. The majority of the samples were amplified by all of the kits tested. The integrity and fidelity of the amplified genomic DNA were assessed by sequence analysis of several PCR products of varying length. We found evidence that one kit in particular may be more error prone while another seemed the more suitable kit for Cryptosporidium clinical samples, generating high molecular weight DNA from all the samples with high fidelity. Thus WGA was found to be a useful technique for producing amplified DNA suitable for downstream genotyping techniques and archiving of Cryptosporidium clinical isolates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, S., Costa, J. and Emanuel, J. R. (1996). PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Research 24, 26232625.CrossRefGoogle ScholarPubMed
Anderson, T., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, M. U. and Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution 17, 14671482.CrossRefGoogle ScholarPubMed
Barker, D., Hansen, M. S., Faruqi, A. F., Giannola, D., Irsula, O. R., Lasken, R. S., Latterich, M., Makarov, V., Oliphant, A., Pinter, J. H., Shen, R., Sleptsova, I., Ziehler, W. and Lai, E. (2004). Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Research 14, 901907.CrossRefGoogle ScholarPubMed
Bergen, A., Haque, K. A., Qi, Y., Beerman, M. B., Garcia-Closas, M., Rothman, N. and Chanock, S. J. (2005). Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex whole genome amplified DNA generated from multiple DNA sources. Human Mutation 26, 262270.CrossRefGoogle ScholarPubMed
Blanco, L., Bernad, A., Lázaro, J. M., Martín, G., Garmendia, C. and Salas, M. (1989). Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. The Journal of Biological Chemistry 264, 89358940.CrossRefGoogle ScholarPubMed
Bouzid, M., Steverding, D. and Tyler, K. M. (2008). Detection and surveillance of waterborne protozoan parasites. Current Opinion in Biotechnology 19, 302306.CrossRefGoogle ScholarPubMed
Burgos, M., Méndez, J. C. and Ribon, W. (2004). Molecular epidemiology of tuberculosis: methodology and applications. Biomedica 24 (Suppl. 1), 188201.CrossRefGoogle ScholarPubMed
Cacciò, S., Homan, W., Camilli, R., Traldi, G., Kortbeek, T. and Pozio, E. (2000). A microsatellite marker reveals population heterogeneity within human and animal genotypes of Cryptosporidium parvum. Parasitology 120, 237244.CrossRefGoogle ScholarPubMed
Cama, V., Arrowood, M. J., Ortega, Y. R. and Xiao, L. (2006). Molecular characterization of the Cryptosporidium parvum IOWA isolate kept in different laboratories. The Journal of Eukaryotic Microbiology 53 (Suppl. 1), S40S42.CrossRefGoogle ScholarPubMed
Cheung, V. and Nelson, S. F. (1996). Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proceedings of the National Academy of Sciences, USA 93, 1467614679.CrossRefGoogle ScholarPubMed
Dean, F., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., Driscoll, M., Song, W., Kingsmore, S. F., Egholm, M. and Lasken, R. S. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences, USA 99, 52615266.CrossRefGoogle ScholarPubMed
Detter, J., Jett, J. M., Lucas, S. M., Dalin, E., Arellano, A. R., Wang, M., Nelson, J. R., Chapman, J., Lou, Y., Rokhsar, D., Hawkins, T. L. and Richardson, P. M. (2002). Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 80, 691698.CrossRefGoogle ScholarPubMed
Eckert, K. and Kunkel, T. A. (1991). DNA polymerase fidelity and the polymerase chain reaction. PCR Methods and Applications 1, 1724.CrossRefGoogle ScholarPubMed
Elwin, K., Chalmers, R. M., Roberts, R., Guy, E. C. and Casemore, D. P. (2001). Modification of a rapid method for the identification of gene-specific polymorphisms in Cryptosporidium parvum and its application to clinical and epidemiological investigations. Applied and Environmental Microbiology 67, 55815584.CrossRefGoogle ScholarPubMed
Esteban, J., Salas, M. and Blanco, L. (1993). Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. The Journal of Biological Chemistry 268, 27192726.CrossRefGoogle ScholarPubMed
Fiegler, H., Geigl, J. B., Langer, S., Rigler, D., Porter, K., Unger, K., Carter, N. P. and Speicher, M. R. (2007). High resolution array-CGH analysis of single cells. Nucleic Acids Research 35, e15.CrossRefGoogle ScholarPubMed
Goodgame, R., Genta, R. M., White, A. C. and Chappell, C. L. (1993). Intensity of infection in AIDS-associated cryptosporidiosis. The Journal of Infectious Diseases 167, 704709.CrossRefGoogle ScholarPubMed
Goumenou, M. and Machera, K. (2004). Measurement of DNA single-strand breaks by alkaline elution and fluorometric DNA quantification. Analytical Biochemistry 326, 146152.CrossRefGoogle ScholarPubMed
Han, S., Zschausch, H. C., Meyer, H. G., Schneider, T., Loos, M., Bhakdi, S. and Maeurer, M. J. (2000). Helicobacter pylori: clonal population structure and restricted transmission within families revealed by molecular typing. Journal of Clinical Microbiology 38, 36463651.CrossRefGoogle ScholarPubMed
Hawkins, T., Detter, J. C. and Richardson, P. M. (2002). Whole genome amplification – applications and advances. Current Opinion in Biotechnology 13, 6567.CrossRefGoogle ScholarPubMed
Langmore, J. (2002). Rubicon Genomics, Inc. Pharmacogenomics 3, 557560.CrossRefGoogle ScholarPubMed
Leav, B., Mackay, M. R., Anyanwu, A., O'Connor, R. M., Cevallos, A. M., Kindra, G., Rollins, N. C., Bennish, M. L., Nelson, R. G. and Ward, H. D. (2002). Analysis of sequence diversity at the highly polymorphic Cpgp40/15 locus among Cryptosporidium isolates from human immunodeficiency virus-infected children in South Africa. Infection and Immunity 70, 38813890.CrossRefGoogle ScholarPubMed
Leoni, F., Gallimore, C. I., Green, J. and McLauchlin, J. (2003) Molecular epidemiological analysis of Cryptosporidium isolates from humans and animals by using a heteroduplex mobility assay and nucleic acid sequencing based on a small double-stranded RNA element. Journal of Clinical Microbiology 41, 981992.CrossRefGoogle ScholarPubMed
Luthra, R. and Medeiros, L. J. (2004). Isothermal multiple displacement amplification: a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. The Journal of Molecular Diagnostics 6, 236242.CrossRefGoogle ScholarPubMed
Mallon, M., MacLeod, A., Wastling, J. M., Smith, H. and Tait, A. (2003). Multilocus genotyping of Cryptosporidium parvum Type 2: population genetics and sub-structuring. Infection, Genetics and Evolution 3, 207218.CrossRefGoogle ScholarPubMed
Nelson, J., Cai, Y. C., Giesler, T. L., Farchaus, J. W., Sundaram, S. T., Ortiz-Rivera, M., Hosta, L. P., Hewitt, P. L., Mamone, J. A., Palaniappan, C. and Fuller, C. W. (2002). TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques (Suppl) 4447.CrossRefGoogle ScholarPubMed
Park, J., Beaty, T. H., Boyce, P., Scott, A. F. and McIntosh, I. (2005). Comparing whole-genome amplification methods and sources of biological samples for single-nucleotide polymorphism genotyping. Clinical Chemistry 51, 15201523.CrossRefGoogle ScholarPubMed
Paunio, T., Reima, I. and Syvänen, A. C. (1996). Preimplantation diagnosis by whole-genome amplification, PCR amplification, and solid-phase minisequencing of blastomere DNA. Clinical Chemistry 42, 13821390.CrossRefGoogle ScholarPubMed
Pinchbeck, G., Morrison, L. J., Tait, A., Langford, J., Meehan, L., Jallow, S., Jallow, J., Jallow, A. and Christley, R. M. (2008). Trypanosomosis in The Gambia: prevalence in working horses and donkeys detected by whole genome amplification and PCR, and evidence for interactions between trypanosome species. BMC Veterinary Research 4, 7–13.CrossRefGoogle ScholarPubMed
Shoaib, M., Baconnais, S., Mechold, U., Le Cam, E., Lipinski, M. and Ogryzko, V. (2008). Multiple displacement amplification for complex mixtures of DNA fragments. BMC Genomics 9, 415428.CrossRefGoogle ScholarPubMed
Singer, V., Jones, L. J., Yue, S. T. and Haugland, R. P. (1997). Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Analytical Biochemistry 249, 228238.CrossRefGoogle ScholarPubMed
Smith, H., Cacciò, S. M., Tait, A., McLauchlin, J. and Thompson, R. C. (2006). Tools for investigating the environmental transmission of Cryptosporidium and Giardia infections in humans. Trends in Parasitology 22, 160167.CrossRefGoogle ScholarPubMed
Smith, H., Cacciò, S. M., Cook, N., Nichols, R. A. and Tait, A. (2007). Cryptosporidium and Giardia as foodborne zoonoses. Veterinary Parasitology 149, 2940.CrossRefGoogle ScholarPubMed
Snabes, M., Chong, S. S., Subramanian, S. B., Kristjansson, K., DiSepio, D. and Hughes, M. R. (1994). Preimplantation single-cell analysis of multiple genetic loci by whole-genome amplification. Proceedings of the National Academy of Sciences, USA 91, 61816185.CrossRefGoogle ScholarPubMed
Spano, F., Putignani, L., McLauchlin, J., Casemore, D. P. and Crisanti, A. (1997). PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiology Letters 150, 209217.CrossRefGoogle Scholar
Strong, W., Gut, J. and Nelson, R. G. (2000). Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infection and Immunity 68, 41174134.CrossRefGoogle ScholarPubMed
Tanriverdi, S., Arslan, O. M., Akiyoshi, D. E., Tzipori, S. and Widmer, G. (2003). Identification of genotypically mixed Cryptosporidium parvum populations in humans and calves. Molecular and Biochemical Parasitology 130, 1323.CrossRefGoogle ScholarPubMed
Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjöld, M., Ponder, B. A. and Tunnacliffe, A. (1992). Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13, 718725.CrossRefGoogle ScholarPubMed
Thorstenson, Y., Hunicke-Smith, S. P., Oefner, P. J. and Davis, R. W. (1998) An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Research 8, 848855.CrossRefGoogle ScholarPubMed
Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W. and Arnheim, N. (1992). Whole genome amplification from a single cell: implications for genetic analysis. Proceedings of the National Academy of Sciences, USA 89, 58475851.CrossRefGoogle ScholarPubMed