Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:15:14.210Z Has data issue: false hasContentIssue false

Is Newtonian Cosmology Really Inconsistent?

Published online by Cambridge University Press:  01 April 2022

David B. Malament*
Affiliation:
Department of Philosophy University of Chicago

Abstract

John Norton has recently argued that Newtonian gravitation theory (at least as applied to cosmological contexts where one envisions the possibility of a homogeneous mass distribution throughout all of space) is inconsistent. I am not convinced. Traditional formulations of the theory may seem to break down in cases of the sort Norton considers. But the difficulties they face are only apparent. They are artifacts of the formulations themselves, and disappear if one passes to the so-called “geometrized” formulation of the theory.

Type
Research Article
Copyright
Copyright © Philosophy of Science Association 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I wish to thank John Earman, Robert Geroch, John Norton, and Robert Wald for helpful comments.

Send reprint requests to the author, Department of Philosophy, 1050 East 59th Street, University of Chicago, Chicago, IL 60637.

References

Cartan, E. (1923 and 1924), “Sur les Variétés a Connexion Affine et la Théorie de la Relativité Généralisée”, Annales Scientifiques de l'Ecole Normale Supérieure 40: 325412 and 1–25.CrossRefGoogle Scholar
Ehlers, J. (1981), “über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie”, in Nitsch, J., Pfarr, J., and Stachow, E. W. (eds.), Grundlagen Probleme der Modernen Physik. Mannheim: Wissenschaftsverlag, pp. 6584.Google Scholar
Friedrichs, K. (1927), “Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz”, Mathematische Annalen 98: 566575.CrossRefGoogle Scholar
Glymour, C. (1971), “Theoretical Realism and Theoretical Equivalence”, in Buck, R. C. and Cohen, R. S. (eds.), Boston Studies in the Philosophy of Science, vol. 8. Dordrecht: Reidel, pp. 275288.Google Scholar
Glymour, C. (1980), Theory and Evidence. Princeton: Princeton University Press.Google Scholar
Havas, P. (1964), “Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and General Theory of Relativity”, Reviews of Modern Physics 36: 938965.CrossRefGoogle Scholar
Heckmann, O. and Schücking, E. (1955), “Bemerkungen zur Newtonschen Kosmologie I”, Zeitschrift für Astrophysik 38: 95105.Google Scholar
Künzle, H. (1972), “Galilei and Lorentz Structures on Space-time: Comparison of the Corresponding Geometry and Physics”, Annales Institute Henri Poincaré 17: 337362.Google Scholar
Künzle, H. (1976), “Covariant Newtonian Limit of Lorentz Space-Times”, General Relativity and Gravitation 7: 445457.CrossRefGoogle Scholar
Malament, D. (1986), “Newtonian Gravity, Limits, and the Geometry of Space”, in Colodny, R. (ed.), From Quarks to Quasars. Philosophical Problems of Modern Physics. Pittsburgh: Pittsburgh University Press, pp. 181201.Google Scholar
Norton, J. (1993), “A Paradox in Newtonian Gravitation Theory”, PSA 1992, vol. 2. East Lansing: Philosophy of Science Association, pp. 412420.Google Scholar
North, J. D. (1965), The Measure of the Universe. A History of Modern Cosmology. Oxford: Clarendon Press.Google Scholar
Penrose, R. and Rindler, W. (1984), Spinors and Space-time, vol. I. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Trautman, A. (1965), “Foundations and Current Problems of General Relativity”, in Deser, S. and Ford, K. (eds.), Lectures in General Relativity. Englewood Cliffs, New Jersey: Prentice Hall, pp. 1248.Google Scholar
Trautman, A. (1966), “Comparison of Newtonian and Relativistic Theories of Space-time”, in Hoffman, B. (ed.), Perspectives in Geometry and Relativity. Essays in Honor of Vlácav Hlavaty. Bloomington, Indiana: Indiana University Press, pp. 413424.Google Scholar
Wald, R. (1984), General Relativity. Chicago: University of Chicago Press.CrossRefGoogle Scholar