Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:46:34.910Z Has data issue: false hasContentIssue false

On Relativity Theory and Openness of the Future

Published online by Cambridge University Press:  01 April 2022

Howard Stein*
Affiliation:
Department of Philosophy, The University of Chicago

Abstract

It has been repeatedly argued, most recently by Nicholas Maxwell, that the special theory of relativity is incompatible with the view that the future is in some degree undetermined; and Maxwell contends that this is a reason to reject that theory. In the present paper, an analysis is offered of the notion of indeterminateness (or “becoming”) that is uniquely appropriate to the special theory of relativity, in the light of a set of natural conditions upon such a notion; and reasons are given for regarding this conception as (not just formally consistent with relativity theory, but also) philosophically reasonable. The bearings upon Maxwell's program for quantum theory are briefly considered.

Type
Research Article
Copyright
Copyright © 1991 The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This material is based upon work supported in part by the National Science Foundation under Grant No. DIR–8808575.

References

Dieks, D. (1988), “Discussion: Special Relativity and the Flow of Time”, Philosophy of Science 55: 456460.CrossRefGoogle Scholar
Einstein, A. ([1905] 1989), “Zur Elektrodynamik bewegter Körper”, in J. Stachel (ed.), The Collected Papers of Albert Einstein, vol. 2. (Originally published in Annalen der Physik 17: 891921.) Princeton: Princeton University Press, pp. 276–306. (A translation is given in Lorentz et al. 1923, pp. 37–65.)Google Scholar
Lango, J. W. (1969), “The Logic of Simultaneity”, The Journal of Philosophy 66: 340350.CrossRefGoogle Scholar
Lorentz, H. A. (1915), “Die Maxwellsche Theorie und die Elektronentheorie”, in E. Warburg (ed.), Physik. Leipzig and Berlin: B. G. Teubner, pp. 311333.Google Scholar
Lorentz, H. A.; Einstein, A.; Minkowski, H.; and Weyl, H. (1923), The Principle of Relativity; A Collection of Original Memoirs on the Special and General Theory of Relativity. Translated by Perrett, W. and Jeffery, G. B. Reprint. New York: Dover Publications.Google Scholar
Malament, D. (1977), “Causal Theories of Time and the Conventionality of Simultaneity”, Noûs 11: 293300.CrossRefGoogle Scholar
Maxwell, N. (1985), “Are Probabilism and Special Relativity Incompatible?”, Philosophy of Science 52: 2343.CrossRefGoogle Scholar
Maxwell, N. (1988), “Discussion: Are Probabilism and Special Relativity Compatible?”, Philosophy of Science 55: 640645.CrossRefGoogle Scholar
Minkowski, H. ([1908] 1911), “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Korpern”, in H. Minkowski Gesammelte Abhandlungen von Hermann Minkowski, vol. 2. (Originally published in Nachrichten der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, n.v.: 53–111.) New York: Chelsea Publishing, pp. 352404.Google Scholar
Minkowski, H. ([1909] 1911), “Raum und Zeit”, in H. Minkowski Gesammelte Abhandlungen von Hermann Minkowski, vol. 2. (Originally published in Physikalische Zeitschrift 10: 104111.) New York: Chelsea Publishing, pp. 431–444. (A translation is given in Lorentz et al. 1923, pp. 75–91.)Google Scholar
Poincaré, H. ([1905] 1952), Science and Hypothesis. Translated by Reprint, W. J. G. New York: Dover Publications.Google Scholar
Poincaré, H. ([1906] 1954), “Sur la dynamique de l'electron”, Oeuvres de Henri Poincaré, vol. 9. (Originally published in Rendiconti del Circolo matematico di Palermo 21: 129176.) Paris: Gauthier-Villars, pp. 494–550.CrossRefGoogle Scholar
Putnam, H. (1967), “Time and Physical Geometry”, The Journal of Philosophy 64: 240247.CrossRefGoogle Scholar
Rietdijk, C. W. (1966), “A Rigorous Proof of Determinism Derived from the Special Theory of Relativity”, Philosophy of Science 33: 341344.CrossRefGoogle Scholar
Rietdijk, C. W. (1976), “Discussion: Special Relativity and Determinism”, Philosophy of Science 43: 598609.CrossRefGoogle Scholar
Schrödinger, E. (1946), What is Life? The Physical Aspect of the Living Cell. Cambridge, England: The University Press; New York: Macmillan.Google Scholar
Sklar, L. (1985), Philosophy and Spacetime Physics. Berkeley and Los Angeles: University of California Press.Google Scholar
Smith, N. K., (trans.) (1950), Immanuel Kant's Critique of Pure Reason. New York: The Humanities Press.Google Scholar
Stein, H. (1968), “On Einstein-Minkowski Space-Time”, The Journal of Philosophy 65: 523.CrossRefGoogle Scholar
Stein, H. (1970a), “A Note on Time and Relativity Theory”, The Journal of Philosophy 67: 289294CrossRefGoogle Scholar
Stein, H. (1970b), “Newtonian Space-Time”, in R. Palter, (ed.), The Annus Mirabilis of Sir Isaac Newton. (Originally published in The Texas Quarterly 10: 174200.) Cambridge, MA: M.I.T. Press, pp. 258–284.Google Scholar