Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T10:56:39.589Z Has data issue: false hasContentIssue false

Reconceptualizations and Interfield Connections: The Discovery of the Link Between Vitamins and Coenzymes

Published online by Cambridge University Press:  01 April 2022

William Bechtel*
Affiliation:
Department of Philosophy, Georgia State University

Abstract

The discovery that some B vitamins are constituents of respiratory coenzymes led to the development of an interfield theory of the kind discussed by Darden and Maull (1977). In this paper it is shown that the development of a useful interfield connection was made possible by two reconceptualizations: (1) a re-conceptualization that united two then-distinct fields giving rise to the concept of vitamins as dietary substances; and (2) another reconceptualization that united two approaches to respiratory metabolism producing the idea that coenzymes are transport vehicles.

Type
Research Article
Copyright
Copyright © Philosophy of Science Association 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I thank Adele Abrahamsen, Lindley Darden, Frederic L. Holmes, and an anonymous reviewer for Philosophy of Science for their very helpful comments and suggestions. Work on this paper was supported by a Fellowship for Independent Study and Research from the National Endowment for the Humanities, which is gratefully acknowledged.

References

Addendal, C. R. (1937), The Story of Vitamin B1. Rahway, NJ: Merck and Company.Google Scholar
Addendal, C. R. (1940), The Story of Vitamin B1, Revised Edition. Rahway, NJ: Merck and Company.Google Scholar
Aronson, N. (forthcoming), “The Vitamins: A Case Study of Resistance to Scientific Discovery”.Google Scholar
Bechtel, W. (1982), “Two Common Errors in Explaining Biological and Psychological Phenomena”, Philosophy of Science 49: 549574.CrossRefGoogle Scholar
Bechtel, W. (forthcoming a), “Theories of Nutrition in the 19th and Early 20th Century: A Study in the Development of Interfield and Interlevel Explanations”.Google Scholar
Bechtel, W. (forthcoming b), “The Evolution of our Understanding of the Cell: A Study in the Dynamics of Scientific Progress”, Studies in the History and Philosophy of Science.Google Scholar
Berzelius, J. J. (1836), “Einige Ideen über bei der Bildung organischer Verbindungen in der lebenden Natur wirksame, aber bisher nicht bemerkte Kraft”, Jares-Bericht über die Fortschritte der Chemie 15: 237245.Google Scholar
Boyland, E. (1933), “Studies in Tissue Metabolism. I. Vitamin B1 and the Coenzyme of Lactic Dehydrogenase”, Biochemical Journal 27: 786790.CrossRefGoogle Scholar
Buchner, E. (1897), “Alkoholische Gährung ohne Hefezellen”, Berichte der deutschen chemischen Gesellschaft 30: 117124.CrossRefGoogle Scholar
Budd, G. (1841), “Scurvy”, in A. Tweedy (ed.). A System of Practical Medicine. Excerpted in Hall (1951), pp. 494499.Google Scholar
Darden, L. and Maull, N. (1977), “Interfield Theories”, Philosophy of Science 44: 4364.CrossRefGoogle Scholar
Drummond, J. C. and Funk, C. (1914), “The Chemical Investigation of the Phosphotungstate precipitate from Rice-Polishings”, Journal of Physiology 8: 598615.Google ScholarPubMed
Drury, A. N., Harris, L. J., and Maudsley, C. (1930), “Vitamin B Deficiency in the Rat: Bradycardia as a Distinctive Feature”, Biochemical Journal 24: 16321649.CrossRefGoogle ScholarPubMed
Eijkman, C. (1897), “Eine beriberiahnliche Krankheit der Huhner”, Virchow's Archiv 148: 523.CrossRefGoogle Scholar
Elvehjem, C. A. (1942), “The Biological Action of Vitamins”, in E. A. Evans (ed.). The Biological Action of Vitamins. Chicago: The University of Chicago Press.Google Scholar
Fleisch, A. (1924), “Some Oxidation Processes of Normal and Cancer Tissue”, Biochemical Journal 18: 294311.CrossRefGoogle ScholarPubMed
Fraser, H. and Stanton, A. T. (1911), “The Etiology of Beriberi”, Studies from Institute of Medical Research, Federation Malaysian States 12.Google Scholar
Fruton, J. S. (1972), Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology. New York: Wiley Interscience.Google Scholar
Funk, C. (1912), “The Etiology of the Deficiency Diseases”, The Journal of State Medicine 20: 341368.Google Scholar
Funk, C. (1922), The Vitamines. Baltimore: Williams and Wilkins.Google Scholar
Guha, B. (1931), “The Physiological Function of Vitamin B1”, Biochemical Journal 25: 13671384.CrossRefGoogle Scholar
Grijns, G. (1901), “Over polyneuritis gallinarum”, Geneeskundig tijdschrift voor Nederlandsch-Indie 41: 3. Portion translated in Hall (1951), pp. 547–553.Google Scholar
György, P. (1934), “Vitamin B2 and the Pellagra-like Dermatitis in Rats”, Nature 133: 498499.CrossRefGoogle Scholar
Hall, T. S. (1951), A Source Book in Animal Biology. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Harden, A. and Young, W. J. (1906), “The Alcoholic Ferment of Yeast-Juice”, Proceedings of the Royal Society B77: 405520.CrossRefGoogle Scholar
Harris, L. J. (1933), “Vitamins”, Annual Review of Biochemistry 2: 247294.CrossRefGoogle ScholarPubMed
Harris, L. J. (1934), “Vitamins”, Annual Review of Biochemistry 3: 253276.CrossRefGoogle Scholar
Harris, L. J. (1935), Vitamins in Theory and Practice. Cambridge: Cambridge University Press.Google Scholar
Holmes, F. L. (1974), Claude Bernard and Animal Chemistry: The Emergence of a Scientist. Cambridge: Harvard University Press.CrossRefGoogle Scholar
Holmes, F. L. (forthcoming), “The Concept of the Metabolic Pathway”.Google Scholar
Hopkins, F. G. (1906), “The Analyst and the Medical Man”, The Analyst 31: 385.CrossRefGoogle Scholar
Hopkins, F. G. (1912), “Feeding Experiments Illustrating the Importance of Accessory Factors in Normal Dietaries”, Journal of Physiology 44: 425460.CrossRefGoogle ScholarPubMed
Hopkins, F. G. (1926), “On Current Views Concerning the Mechanisms of Biological Oxidations”, Skandinavisches Archiv für Physiologie 49: 3359.CrossRefGoogle Scholar
Ihde, A. J. and Becker, S. L. (1971), “Conflict of Concepts in Early Vitamin Studies”, Studies in the History of Biology 4: 133.CrossRefGoogle ScholarPubMed
Keilin, D. (1966), The History of Cell Respiration and Cytochrome. Cambridge: Cambridge University Press.Google Scholar
Kinnersley, H. W. and Peters, R. A. (1930), “Carbohydrate Metabolism of Birds. II. Brain Localization of Lactic Acidosis in Avitaminosis B, and Its Relation to the Origin of Symptoms”, Biochemical Journal 24: 712722.Google Scholar
Kohler, R. E. (1973), “The Enzyme Theory and the Origin of Biochemistry”, Isis 64: 181196.Google ScholarPubMed
Krause, H. D. and McCollum, E. V. (1932), “Review of Recent Studies on the Antineuritic Vitamin”, in L. B. Mendel, et. al. The Vitamins: A Symposium on the Present Status of the Knowledge of Vitamins. Chicago: American Medical Association, pp. 3860.Google Scholar
Krebs, H. A. (1943), “The Intermediary Stages in the Biological Oxidation of Carbohydrates”, Advances in Enzymology 3: 191252.Google Scholar
Krebs, H. A. (1947), “Cyclic Processes in Living Matter”, Enzymologia 12: 88100.Google Scholar
Krebs, H. A. (1981), Otto Warburg: Cell Physiologist, Biochemist, and Eccentric. Oxford: Clarendon Press.Google Scholar
Krebs, H. A. and Johnson, W. A. (1937), “The Role of Citric Acid in Intermediate Metabolism in Animal Tissues”, Enzymologia 4: 148156.Google Scholar
Kuhn, R., György, P., and Wagner-Jauregg, T. (1933), “Über Lactoflavin der Farbstoff der Molke”, Berichte der deutschen chemischen Gesellschaft 66: 317, 576, 1034, 1577.Google Scholar
Kuhn, T. S. (1970), The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
Liebig, J. (1842), (trans. W. Gregory) Animal Chemistry or Organic Chemistry in Its Application to Physiology and Pathology. Cambridge: John Owen. Reprinted: New York: Johnson Reprint Company, 1964.Google Scholar
Lind, J. (1753), A Treatise on Scurvy. London: Sands, Murray, and Cochrane.Google Scholar
Lohmann, K. and Schuster, P. (1937), “Untersuchunger über die Cocarboxylase”, Biochemische Zeitschrift 294: 188214.Google Scholar
Lipmann, F. (1939), “Flavin Component of the Pyruvic Acid Oxidation System”, Nature 143: 436.CrossRefGoogle Scholar
Lipmann, F. (1945), “Acetylation of sulfanilamide by liver homogenates and extracts”, Journal of Biological Chemistry 160: 173190.CrossRefGoogle Scholar
Lipmann, F. (1947), “Coenzyme for Acetylation, A Pantothenic Acid Derivative”, Journal of Biological Chemistry 167: 869.CrossRefGoogle ScholarPubMed
Lipmann, F. (1971), Wanderings of a Biochemist. New York: Wiley Interscience.Google Scholar
McCollum, E. V. and Davis, M. (1915), “Essential Factors in the Diet During Growth”, Journal of Biological Chemistry 23: 231.CrossRefGoogle Scholar
McCollum, E. V. (1957), A History of Nutrition. Boston: Houghton Mifflin.Google Scholar
Meyerhof, O. (1924), Chemical Dynamics of Life Phenomena. Philadelphia: Lippincott.Google Scholar
Nagel, E. (1961), The Structure of Science. New York: Harcourt and Brace.CrossRefGoogle Scholar
Needham, D. M. (1932), The Biochemistry of Muscle. London: Methuen and Company.Google Scholar
Nickles, T. (1973), “Two Concepts of Intertheoretic Reduction”, The Journal of Philosophy 70: 181201.CrossRefGoogle Scholar
Ochoa, S. (1942), “CoCarboxylase”, in R. A. Evans (ed.). The Biological Action of Vitamins. Chicago: The University of Chicago Press, pp. 1742.Google Scholar
Peters, R. and Sinclair, H. (1933), “Studies in Avian Carbohydrate Metabolism: IV. Factors Influencing the Maintenance of Respiration in Surviving Brain Tissue of the Normal Pigeon”, Biochemical Journal 27: 16771686.CrossRefGoogle Scholar
Reader, V. (1929), “A Second Thermolabile Water-Soluble Accessory Factor Necessary for the Nutrition of the Rat”, Biochemical Journal 23: 689691.CrossRefGoogle ScholarPubMed
Schaffner, K. F. (1967), “Approaches to Reduction”, Philosophy of Science 34: 137147.CrossRefGoogle Scholar
Smith, D. T. (1942), “The Story of Pellagra and Its Treatment with Nicotinic Acid”, in E. A. Evans (ed.). The Biological Action of Vitamins. Chicago: The University of Chicago Press, pp. 84110.Google Scholar
Sure, B. (1932), “The Present Status of Vitamin B2 (G): Historical Survey”, in L. B. Mendel, et al., The Vitamins: A Symposium on the Present Status of the Knowledge of Vitamins. Chicago: The American Medical Association, pp. 7890.Google Scholar
Svirbeley, J. L. and Szent-Györgyi, A. v. (1932), “Letters to the Editor”, Nature 129: 576 and 690.Google Scholar
Szent-Györgyi, A. v. (1924), “Über den Mechanismus der Succin- und Paraphenylendiaminoxydation. Ein Beitrag zur Theorie der Zellatmung”, Biochemische Zeitschrift 150: 195210.Google Scholar
Szent-Györgyi, A. v. (1928), “Observations on the Peroxidase Systems and the Chemistry of the Adrenal Cortex. Description of a New Carbohydrate Derivative”, Biochemical Journal 22: 13871409.CrossRefGoogle ScholarPubMed
Szent-Györgyi, A. v. (1932), “Letter to the Editor”, Nature 129: 943.CrossRefGoogle Scholar
Szent-Györgyi, A. v. (1938), “Oxidation and Fermentation”, in J. Needham and D. E. Green (eds.), Perspectives in Biochemistry. Cambridge: Cambridge University Press, pp. 165174.Google Scholar
Szent-Györgyi, A. v. (1939), On Oxidation, Fermentation, Vitamins, Health and Disease. Baltimore: Williams and Wilkins.Google Scholar
Teich, M. (1965), “On the Historical Foundations of Modern Biochemistry”, Clio Medica 1: 4157.Google Scholar
Theorell, H. (1934), “Über die Wirkungsgruppe des Gelben Ferments”, Biochemische Zeitschrift 275: 3738. Translated in H. Kalckar (ed.), Biological Phosphorylation. Englewood Cliffs, NJ: Prentice Hall, 1969, pp. 83–84.Google Scholar
Thunberg, T. (1930), “The Hydrogen Activation Enzymes of the Cell”, Quarterly Review of Biology 5: 318347.CrossRefGoogle Scholar
Vogt-M⊘ller, P. (1931), “Is Avitaminosis B, an Intoxication by Methylglyoxal?Biochemical Journal 25: 418421.CrossRefGoogle Scholar
Wagner, A. and Folkers, K. (1964), Vitamins and Coenzymes. New York: Wiley Inter-science.Google ScholarPubMed
Warburg, O. (1949), Heavy Metal Prosthetic Groups. Oxford: Clarendon Press.Google Scholar
Warburg, O. and Christian, W. (1932), “Über ein neues Oxydationsferment und sein Absorptionsspektrum”, Biochemische Zeitschrift 254: 438458.Google Scholar
Warburg, Otto and Christian, W. (1933), “Über das gelbe Ferment und seine Wirkungen”, Biochemische Zeitschrift 266: 377411.Google Scholar
Warburg, O., Christian, W., and Griese, A. (1935), “Die Wirkungsgruppe des Co-Ferments aus roten Blutzellen”, Biochemische Zeitschrift 279: 143144.Google Scholar
Wieland, H. (1932), On the Mechanism of Oxidation. New Haven: Yale University Press.Google Scholar
Wurmser, R. (1932), “Biological Oxidations and Reductions”, Annual Review of Biochemistry 1: 5568.CrossRefGoogle Scholar
Zilva, S. S. (1932), “Letters to the Editor”, Nature 129: 690 and 943.Google Scholar