Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T12:20:42.487Z Has data issue: false hasContentIssue false

Approximative Explanation is Deductive-Nomological

Published online by Cambridge University Press:  01 April 2022

David Pearce
Affiliation:
Institute of Philosophy, Free University of Berlin
Veikko Rantala
Affiliation:
Academy of Finland Helsinki

Abstract

We revive the idea that a deductive-nomological explanation of a scientific theory by its successor may be defensible, even in those common and troublesome cases where the theories concerned are mutually incompatible; and limiting, approximating and counterfactual assumptions may be required in order to define a logical relation between them. Our solution is based on a general characterization of limiting relations between physical theories using the method of nonstandard analysis.

Type
Research Article
Copyright
Copyright © 1985 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. W. (1959), “The Foundations of Rigid Body Mechanics and the Derivation of its Laws from those of Particle Mechanics”, in The Axiomatic Method, Henkin, L., Suppes, P., and Tarski, A. (eds.). Amsterdam: North-Holland.Google Scholar
Balzer, W. (1981), “Sneed's Theory Concept and Vagueness”, in Structure and Approximation in Physical Theories, A Hartkämper and H.-J. Schmidt (eds.). New York: Plenum Press.CrossRefGoogle Scholar
Balzer, W.; Pearce, D.; and Schmidt, H.-J. (eds.) (1984), Reduction in Science: Structure, Examples, Philosophical Problems. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Czarnocka, M., and Zytkow, J. (1982), “Difficulties with the Reduction of Classical to Relativistic Mechanics”, in Polish Essays in the Philosophy of the Natural Sciences, Krajewski, W. (ed.). Dordrecht: D. Reidel.Google Scholar
Ehlers, J. (1981), “Über den Newtonschen Grenzwert der Einsteinschen Gravitations-theorie”, in Grundlagenprobleme der modernen Physik: Festschrift für Peter Mittelstaedt, Nitsch, J., Pfarr, J., and Stachow, E.-W. (eds.). Mannheim: Bibliographisches Institut.Google Scholar
Ehlers, J. (1983), “On Limit Relations and Approximative Explanations of Physical Theories”, invited paper, 7th International Congress for Logic, Methodology, and Philosophy of Science, Salzburg, 1983.Google Scholar
Feyerabend, P. (1962), “Explanation, Reduction, and Empiricism”, in Scientific Explanation, Space, and Time, Feigl, H. and Maxwell, G. (eds.). Minnesota Studies in the Philosophy of Science, vol. 3. Minneapolis: University of Minnesota Press.Google Scholar
Feyerabend, P. (1963), “How To Be a Good Empiricist”, in Philosophy of Science, Baumrim, B. (ed.). The Delaware Seminar, vol. 2. New York: John Wiley.Google Scholar
Glymour, C. (1970), “On Some Patterns of Reduction”, Philosophy of Science 37: 340–53.CrossRefGoogle Scholar
Hartkämper, A., and Schmidt, H.-J. (eds.) (1981), Structure and Approximation in Physical Theories. New York: Plenum Press.CrossRefGoogle Scholar
Hempel, C. (1965), Aspects of Scientific Explanation. New York: Free Press.Google Scholar
Kemeny, J. G., and Oppenheim, P. (1956), “On Reduction”, Philosophical Studies 7: 617.CrossRefGoogle Scholar
Krajewski, W. (1977), Correspondence Principle and the Growth of Science. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Kuhn, T. (1962), The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.Google Scholar
Ludwig, G. (1978), Die Grundstrukturen einer physikalischen Theorie. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Ludwig, G. (1981), “Imprecision in Physics”, in Hartkämper and Schmidt.CrossRefGoogle Scholar
Mayr, D. (1981a), “Investigations of the Concept of Reduction, II”, Erkenntnis 16: 109–29.CrossRefGoogle Scholar
Mayr, D. (1981b), “Approximative Reduction by Completion of Empirical Uniformities”, in Hartkämper and Schmidt.CrossRefGoogle Scholar
Moulines, C.-U. (1980), “Intertheoretic Approximation: The Kepler-Newton Case”, Synthese 45: 387412.CrossRefGoogle Scholar
Moulines, C.-U. (1981), “A General Scheme for Intertheoretic Approximation”, in Hartkämper and Schmidt.CrossRefGoogle Scholar
Nagel, E. (1949), “The Meaning of Reduction in the Natural Sciences”, in Science and Civilization, Stauffer, R. C. (ed.). Madison: University of Wisconsin Press.Google Scholar
Nagel, E. (1961), The Structure of Science. New York: Harcourt.CrossRefGoogle Scholar
Nickles, T. (1973), “Two Concepts of Intertheoretic Reduction”, Journal of Philosophy 70: 181201.CrossRefGoogle Scholar
Niiniluoto, I. (1979), “Truthlikeness in First-Order Languages”, in Essays on Mathematical and Philosophical Logic, Hintikka, J., Niiniluoto, I., and Saarinen, E. (eds.). Dordrecht: D. Reidel.Google Scholar
Niiniluoto, I. (1982), “Truthlikeness for Quantitative Statements”, in PSA 1982, Asquith, P. and Nickles, T. (eds.). Vol. 1. East Lansing: Philosophy of Science Association.Google Scholar
Niiniluoto, I. (1983), “Theories, Approximations, and Idealizations”, invited paper, 7th International Congress for Logic, Methodology, and Philosophy of Science, Salzburg, 1983.Google Scholar
Nowak, L. (1980), The Structure of Idealization: Towards a Systematic Interpretation of the Marxian Idea of Science. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Nowakova, I. (1975), “Idealization and the Problem of Correspondence”, Poznan Studies in the Philosophy of the Sciences and the Humanities. Vol. 1. Amsterdam: Rodopi, pp. 6570.Google Scholar
Pearce, D. (1982a), “Logical Properties of the Structuralist Concept of Reduction”, Erkenntnis 18: 307–33.CrossRefGoogle Scholar
Pearce, D. (1982b), “Stegmüller on Kuhn and Incommensurability”, British Journal for the Philosophy of Science 33: 389–96.CrossRefGoogle Scholar
Pearce, D., and Rantala, V. (1983a), “Correspondence as an Intertheory Relation”, Studia Logica 42: 365–73.CrossRefGoogle Scholar
Pearce, D., and Rantala, V. (1983b), “Constructing a General Model of Theory Dynamics”, Studia Logica 42: 349–64.CrossRefGoogle Scholar
Pearce, D., and Rantala, V. (1983c), “Logical Aspects of Scientific Reduction”, in Epistemology and Philosophy of Science, Weingartner, P. and Czermak, H. (eds.). Vienna: Hölder-Pichler-Tempsky.Google Scholar
Pearce, D., and Rantala, V. (1984a), “Limiting-Case Correspondence between Physical Theories”, in Balzer et al.CrossRefGoogle Scholar
Pearce, D., and Rantala, V. (1984b), “Continuity and Scientific Discovery”, Communication and Cognition.Google Scholar
Pearce, D., and Rantala, V. (1984c), “A Logical Study of the Correspondence Relation”, Journal of Philosophical Logic 13: 4784.CrossRefGoogle Scholar
Putnam, H. (1965), “How Not to Talk about Meaning”, in In Honor of Philipp Frank, Cohen, R. S. and Wartofsky, M. (eds.). Boston Studies in the Philosophy of Science, vol. 2. New York: Humanities Press.Google Scholar
Rantala, V. (1979), “Correspondence and Non-Standard Models: A Case Study”, in The Logic and Epistemology of Scientific Change, Niiniluoto, I. and Tuomela, R. (eds.). Acta Philosophica Fennica 30. Amsterdam: North-Holland.Google Scholar
Schaffner, K. (1967), “Approaches to Reduction”, Philosophy of Science 34: 137–47.CrossRefGoogle Scholar
Scheibe, E. (1973a), “The Approximative Explanation and the Development of Physics”, in Logic, Methodology, and Philosophy of Science, IV, Suppes, P., Henkin, L., Joja, A., and Moisil, G. R. (eds.). Amsterdam: North-Holland.Google Scholar
Scheibe, E. (1973b), “die Erklärung der Keplerschen Gesetze durch Newtons Gravitationsgesetz”, in Einheit und Vielheit, Scheibe, E. and Süssmann, G. (eds.). Göttingen: Vandenhoeck and Ruprecht.Google Scholar
Scheibe, E. (1979), “On the Structure of Physical Theories”, in The Logic and Epistemology of Scientific Change, Niiniluoto, I. and Tuomela, R. (eds.). Acta Philosophica Fennica 30. Amsterdam: North-Holland.Google Scholar
Scheibe, E. (1982a), “Two Types of Successor Relations between Theories”, invited paper, Conference on the Foundations of Logic, University of Waterloo, Waterloo, Ontario, 1982.Google Scholar
Scheibe, E. (1982b), “Zum Theorienvergleich in der Physik”, in Physik, Philosophie, und Politik, Meyer-Abich, K. M. (ed.). Munich: Carl Hanser Verlag.Google Scholar
Scheibe, E. (1983), “Ein Vergleich der Theoriebegriffe von Sneed und Ludwig”, in Epistemology and Philosophy of Science, Weingartner, P. and Czermak, H. (eds.). Vienna: Hölder-Pichler-Tempsky.Google Scholar
Schmidt, H.-J. (1981), “Stable Axioms in Physical Theories”, in Hartkämper and Schmidt.CrossRefGoogle Scholar
Schmidt, H.-J. (1984), “Tangential Embedding as a Special Case of Approximative Reduction” in Balzer et al.CrossRefGoogle Scholar
Sklar, L. (1967), “Types of Inter-Theoretic Reduction”, British Journal for the Philosophy of Science 18: 109–24.CrossRefGoogle Scholar
Sneed, J. D. (1971), The Logical Structure of Mathematical Physics. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Spector, M. (1978), Concepts of Reduction in the Physical Sciences. Philadelphia: Temple University Press.Google Scholar
Stegmüller, W. (1979), The Structuralist View of Theories. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tuomela, R. (1978), “Versimilitude and Theory-Distance”, Synthese 38.CrossRefGoogle Scholar
Tuomela, R. (1979), “Scientific Change and Approximation”, in The Logic and Epistemology of Scientific Change, Niiniluoto, I. and Tuomela, R. (eds.). Acta Philosophica Fennica 30. Amsterdam: North-Holland.Google Scholar