Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T12:08:32.216Z Has data issue: false hasContentIssue false

Discussion: Translation, Reduction and Commensurability: A Note on Schroeder-Heister and Schaefer

Published online by Cambridge University Press:  01 April 2022

David Pearce*
Affiliation:
Institut für Philosophie Freie Universität Berlin

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Discussion
Copyright
Copyright © 1989 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balzer, W. (1985), “Incommensurability, Reduction and Translation”, Erkenntnis 23: 255267.CrossRefGoogle Scholar
van Benthem, J., and Pearce, D. (1984), “A Mathematical Characterization of Interpretation between Theories”, Studia Logica 43: 295303.CrossRefGoogle Scholar
Gaifman, H. (1974), “Operations on Relational Structures, Functors and Classes, I”, in L. Henkin (ed.), Proceedings of the Tarski Symposium. Providence: American Mathematical Society.Google Scholar
Gajda, A., Krynicki, M., and Szczerba, L. (1987), “A Note on Syntactical and Semantical Functions”, Studia Logica 46: 177185.CrossRefGoogle Scholar
Hodges, W. (1975), “A Normal Form for Algebraic Constructions, II”, Logique et Analyse 71–71: 429480.Google Scholar
Pearce, D. (1982a), “Logical Properties of the Structuralist Concept of Reduction”, Erkenntnis 18: 307333.CrossRefGoogle Scholar
Pearce, D. (1982b), “Stegmüller on Kuhn and Incommensurability”, British Journal for the Philosophy of Science 33: 389396.CrossRefGoogle Scholar
Pearce, D. (1986), “Incommensurability and Reduction Reconsidered”, Erkenntnis 24: 293308.CrossRefGoogle Scholar
Pearce, D. (1987), Roads to Commensurability. Dordrecht: Reidel.CrossRefGoogle Scholar
Schroeder-Heister, P. and Schaefer, F. (1989), “Reduction, Representation and Commensurability of Theories”, Philosophy of Science 56: 130157.CrossRefGoogle Scholar
Sette, A. and Szczerba, L. (1978), “Algebraic Characterization of Interpretability”, Notas e Communicacoes de Matematica No. 94, Universidade Federal de Pernambuco.Google Scholar
Sneed, J. D. (1971), The Logical Structure of Mathematical Physics. Dordrecht: Reidel.CrossRefGoogle Scholar
Stegmüller, W. (1975), “Structures and Dynamics of Theories: Some Reflections on J. D. Sneed and T. S. Kuhn”, Erkenntnis 9: 75100.CrossRefGoogle Scholar
Stegmüller, W. (1986), Theorie und Erfahrung, Dritter Teilband. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Suppes, P. (1957), Introduction to Logic. Princeton: van Nostrand.Google Scholar
Szczerba, L. (1978), “Interpretability of Elementary Theories”, in R. Butts and J. Hintikka (eds.), Logic Foundations of Mathematics and Computability Theory. Dordrecht: Reidel.Google Scholar
Tarski, A., Mostowski, A., and Robinson, R. M. (1953), Undecidable Theories. Amsterdam: North-Holland.Google Scholar