Published online by Cambridge University Press: 01 January 2022
Complex life cycles are common in the eukaryotic world, and they complicate the question of how to define individuality. Using a bottom-up, gene-centric approach, I consider the concept of fitness in the context of complex life cycles. I analyze the fitness effects of an allele (or a trait) on different biological units within a complex life history and how these effects drive evolutionary change within populations. Based on these effects, I attempt to construct a concept of fitness that accurately predicts evolutionary change in the context of complex life cycles.
I would like to thank Maureen O’Malley, Peter Godfrey-Smith, and James Griesemer for organizing the symposium. During this work, I was supported by a postdoctoral fellowship from the NASA Astrobiology Institute and by grants from the John Templeton Foundation (43285), the NASA Astrobiology Institute (Cooperative Agreement Notice 7), and the National Science Foundation (DEB-1457701).