Article contents
Fulling Non-uniqueness and the Unruh Effect: A Primer on Some Aspects of Quantum Field Theory
Published online by Cambridge University Press: 01 January 2022
Abstract
We discuss the intertwined topics of Fulling non-uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein-Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would take to settle the open question of whether a satisfactory example exists. A popular gloss on the Unruh effect has it that an observer uniformly accelerated through the Minkowski vacuum experiences a thermal flux of Rindler quanta. Taking the Unruh effect, so glossed, to establish that the notion of particle must be relativized to a reference frame, some would use it to demote the particle concept from fundamental status. We explain why technical results do not support the popular gloss and why the attempted demotion of the particle concept is both unsuccessful and unnecessary. Fulling non-uniqueness and the Unruh effect merit attention despite these negative verdicts because they provide excellent vehicles for illustrating key concepts of quantum field theory and for probing foundational issues of considerable philosophical interest.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Philosophy of Science Association
Footnotes
We are indebted to Jeremy Butterfield, Rob Clifton, and Carlo Rovelli for helpful comments on an earlier draft of this paper. We also wish to thank the anonymous referees for criticisms and suggestions that led to substantive improvements.
References
- 24
- Cited by