Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T23:02:03.601Z Has data issue: false hasContentIssue false

Helmholtz's Naturalized Conception of Geometry and his Spatial Theory of Signs

Published online by Cambridge University Press:  01 April 2022

David Jalal Hyder*
Affiliation:
Max-Planck-Institut für Wissenschaftsgeschichte
*
Abteilung III, Max-Planck-Institut für Wissenschaftsgeschichte, Wilhelmstr. 44, 10117 Berlin, Germany; e-mail: jalal@mpiwg-berlin.mpg.de.

Abstract

I analyze the two main theses of Helmholtz's “The Applicability of the Axioms to the Physical World,” in which he argued that the axioms of Euclidean geometry are not, as his neo-Kantian opponents had argued, binding on any experience of the external world. This required two argumentative steps: 1) a new account of the structure of our representations which was consistent both with the experience of our (for him) Euclidean world and with experience of a non-Euclidean one, and 2) a demonstration of why geometric propositions are essentially connected to material and temporal aspects of experience. The effect of Helmholtz's discussion is to throw into relief an intermediate category of metrological objects—objects which are required for the properly theoretical activity of doing physical science (in this sense, a priori requirements for doing science), all while being recognizably contingent aspects of experience.

Type
Philosophy of Psychology and Cognitive Science
Copyright
Copyright © 1999 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was conducted in Toronto, Göttingen, and Berlin, with the support of the Social Science and Humanities Research Council of Canada, the German Academic Exchange Service (DAAD), and the Max-Planck-Institut für Wissenschaftsgeschichte. I am grateful for comments and advice from Ian Hacking, Lorenz Krüger, Ulrich Majer, and Alasdair Urquhart.

References

Einstein, Albert (1917), “Zwei Vorträge über Goethe”, Die Naturwissenschaften 44: 675.Google Scholar
Einstein, Albert. (1921), “Geometrie und Erfahrung”, Sitzungsberichte der preussichen Akademie der Wissenschaften V.Google Scholar
Friedman, Michael (1995/96), “Poincaré's Conventionalism and the Logical Positivists”, Foundations of Science 2: 299314.CrossRefGoogle Scholar
Helmholtz, Hermann von (1870), “Über den Ursprung und die Bedeutung der geometrischen Axiome”, in Helmholtz 1896, 131.Google Scholar
Helmholtz, Hermann von. (1878a), “Die Tatsachen in der Wahrnehmung”, in Helmholtz 1896, 213247.Google Scholar
Helmholtz, Hermann von. (1878b), “The Applicability of the Axioms to the Physical World”, in Helmholtz 1977, 152163.Google Scholar
Helmholtz, Hermann von. (1883), Wissenschaftliche Abhandlungen, vol. 2. Leipzig: Johann Ambrosios Barth.Google Scholar
Helmholtz, Hermann von. (1892), “Goethes Vorahnung kommender naturwissenschaftlicher Ideen”, in Helmholtz 1896, 335361.Google Scholar
Helmholtz, Hermann von. (1896), Vorträge und Reden, vol. 2. Braunschweig: Vieweg.Google Scholar
Helmholtz, Hermann von. (1921), Schriften zur Erkenntnistheorie. Hertz, Paul and Schlick, Moritz (eds.). Berlin: Springer.CrossRefGoogle Scholar
Helmholtz, Hermann von. (1977), Epistemological Writings: the Paul Hertz/Moritz Schlick Centenary Edition of 1921. Cohen, Robert S. and Elkana, Yehuda (eds.), Lowe, Malcolm F. (tr.). Dordrecht: Reidel. (Re-edition of Helmholtz 1921.)CrossRefGoogle Scholar
Hyder, David (2000), “The Color-space and Physical Geometry”, Science in Context (forthcoming).Google Scholar
Kant, Immanuel (1787), Kritik der Reinen Vernunft. Riga: Johann Friedrich Hartknoch.Google Scholar
Reichenbach, Hans (1928), Philosophie der Raum-Zeit-Lehre. Berlin and Leipzig: Walter de Gruyter.CrossRefGoogle Scholar