Published online by Cambridge University Press: 01 January 2022
We consider the nature of quantum randomness and how one might have empirical evidence for it. We will see why, depending on one’s computational resources, it may be impossible to determine whether a particular notion of randomness properly characterizes one’s empirical data. Indeed, we will see why even an ideal observer under ideal epistemic conditions may never have any empirical evidence whatsoever for believing that the results of one’s quantum-mechanical experiments are randomly determined. This illustrates a radical sort of empirical underdetermination faced by fundamentally stochastic theories like quantum mechanics.
This article is a direct result of a graduate seminar we taught with Sean Walsh. We would like to thank him for numerous conversations on the topic and for his insights represented by the two formal propositions. We would also like to thank Tim Maudlin, David Albert, Barry Loewer, Hannes Leitgeb, and Brian Skyrms for helpful discussions and Isaac Wilhelm, Daniel Herrmann, and the reviewers for comments on an earlier draft of this article.