Published online by Cambridge University Press: 01 April 2022
In the usual procedure of deriving equilibrium thermodynamics from classical statistical mechanics, Gibbsian fine-grained entropy is taken as the analogue of thermodynamical entropy. However, it is well known that the fine-grained entropy remains constant under the Hamiltonian flow. In this paper it is argued that we need not search for alternatives for fine-grained entropy, nor do we have to reject Hamiltonian dynamics, in order to solve the problem of the constancy of fine-grained entropy and, more generally, to account for the non-equilibrium part of the laws of thermodynamics. Rather, we have to weaken the requirement that equilibrium be identified with a stationary probability distribution.
I would like to thank Dennis Dieks and Jos Uffink for valuable comments on earlier versions of this paper.