Published online by Cambridge University Press: 01 January 2022
Theorizing in ecology and evolution often proceeds via the construction of multiple idealized models. To determine whether a theoretical result actually depends on core features of the models and is not an artifact of simplifying assumptions, theorists have developed the technique of robustness analysis, the examination of multiple models looking for common predictions. A striking example of robustness analysis in ecology is the discovery of the Volterra Principle, which describes the effect of general biocides in predator-prey systems. This paper details the discovery of the Volterra Principle and the demonstration of its robustness. It considers the classical ecology literature on robustness and introduces two individual-based models of predation, which are used to further analyze the Volterra Principle. The paper also introduces a distinction between parameter robustness, structural robustness, and representational robustness, and demonstrates that the Volterra Principle exhibits all three kinds of robustness.
Earlier versions of this paper were presented at the Australasian Association of Philosophy, the London School of Economics, and the University of Bristol. The authors wish to thank those audiences as well as Patrick Forber, Ken Waters, Deena Skolnick Weisberg, Uri Wilensky, and Bill Wimsatt for many helpful comments. Special thanks to Giacomo Sillari for his assistance in translating Volterra's original paper and his insightful thoughts about Volterra's aims and methods. Some of the research in this paper was supported by NSF grant SES-0620887 to MW.