Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T01:02:29.917Z Has data issue: false hasContentIssue false

Transparency in Hungarian vowel harmony*

Published online by Cambridge University Press:  20 October 2008

Catherine O. Ringen
Affiliation:
University of Iowa

Extract

Phonologists have known for some time that the so-called ‘standard’ theory of generative phonology is not adequate for the analysis of vowel harmony. Ringen (1975, 1977, 1980) suggests that some of the problems can be solved by abandoning the assumption that phonological representations are fully specified. Clements (1977b, 1980) suggests that vowel harmony should be analysed autosegmentally. Underspecification theory, developed in the recent work of Kiparsky, Archangeli and Pulleyblank, incorporates both of these proposals. This paper considers how Hungarian can be analysed within this theory. It is shown that by adopting Goldsmith's (1985) proposal that vowel harmony in Hungarian involves the spreading of the feature [−back], the transparent (neutral) vowels in Hungarian are derived because the redundancy rule assigning [−back] to these vowels, although available, does not apply early in the derivation because its structural description is not met.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archangeli, D. (1984). Underspecification in Yawelmani phonology and morphology. PhD dissertation, MIT. Published 1988, New York: Garland.Google Scholar
Archangeli, D. & Pulleyblank, D. (1987). Maximal and minimal rules: effects of tier scansion. NELS 17. 1635.Google Scholar
Archangeli, D. & Pulleyblank, D. (forthcoming a). The content and structure of phonological representations. Cambridge, Mass.: MIT Press.Google Scholar
Archangeli, D. & Pulleyblank, D. (forthcoming b). Yoruba vowel harmony. LI.Google Scholar
Booij, G. (1984). Neutral vowels and the autosegmental analysis of Hungarian vowel harmony. Linguistics 22. 629641.CrossRefGoogle Scholar
Bosch, A., Need, B. & Schiller, E. (eds.) (1987). Papers from the parasession on autosegmental and metrical phonology. Chicago: Chicago Linguistic Society.Google Scholar
Clements, G. (1977a). Neutral vowels in Hungarian vowel harmony: an autosegmental interpretation. NELS 7. 4964.Google Scholar
Clements, G. (1977b). The autosegmental treatment of vowel harmony. In Dressier & Pfeiffer (1977). 111119.Google Scholar
Clements, G. (1980). Vowel harmony in nonlinear generative phonology: an autosegmental model. Indiana University Linguistics Club.Google Scholar
Clements, G. (1985). The geometry of phonological features. PhY 2. 225252.Google Scholar
Dressier, W. & Pfeiffer, O. (eds.) (1977). Phonologica 1976. Innsbruck: Innsbrucker Beiträge zur Sprachwissenchaft.Google Scholar
Ewen, C. & Van Der Hulst, H. (1985). Single-valued features and the non-linear analysis of vowel harmony. In Bennis, H. & Beukema, F. (eds.) Linguistics in the Netherlands 1985. Dordrecht: Foris. 3948.Google Scholar
Farkas, D. & Beddor, P. (1987). Private and equipollent backness in Hungarian. In Bosch, et al. (1987). 90105.Google Scholar
Goldsmith, J. (1976). Autosegmental phonology. PhD dissertation, MIT. Published 1979, New York: Garland.Google Scholar
Goldsmith, J. (1985). Vowel harmony in Khalkha Mongolian, Yaka, Finnish and Hungarian. PhY 2. 253275.Google Scholar
Goldsmith, J. (1987). Vowel systems. In Bosch, et al. (1987). 116133.Google Scholar
Hulst, H. Van Der (1985). Vowel harmony in Hungarian: a comparison of segmental and autosegmental analysis. In van der Hulst, H. & Smith, N. (eds.) Advances in nonlinear phonology. Dordrecht: Foris. 267303.CrossRefGoogle Scholar
Hulst, H. Van Der & Smith, N. (1986). On neutral vowels. In Bogers, K., van der Hulst, H. & Mous, M. (eds.) The phonological representation of suprasegmentals. Dordrecht: Foris. 233279.CrossRefGoogle Scholar
Kiparsky, P. (1973). ‘Elsewhere’ in phonology. In Anderson, S. and Kiparsky, P. (eds.) A Festschrift for Morris Halle. New York: Holt, Rinehart & Winston. 93106.Google Scholar
Kiparsky, P. (1981). Vowel harmony. Ms, Stanford University.Google Scholar
Kiparsky, P. (1985). Some consequences of Lexical Phonology. PhY 2. 85138.Google Scholar
Kontra, M. & Ringen, C. (1986). Vowel harmony: the evidence from loanwords. Ural-Altaic Yearbook. 114.Google Scholar
Kontra, M. & Ringen, C. (1987). Stress and harmony in Hungarian loanwords. In Rédei, K. (ed.) Studien zur Phonologie und Morphonologie der uralischen Sprachen. Vienna: Verband der Wissenschaftliche Gesellschafte Österreichs. 8196.Google Scholar
Kornai, A. (1987). Hungarian vowel harmony. WCCFL 6. 147161.Google Scholar
Levergood, B. (1984). Rule governed vowel harmony and the strict cycle. NELS 14. 275293.Google Scholar
McCarthy, J. (1984). Theoretical consequences of Montañes vowel harmony. LI 15. 291318.Google Scholar
Pulleyblank, D. (1986). Tone in Lexical Phonology. Dordrecht: Reidel.CrossRefGoogle Scholar
Ringen, C. (1975). Vowel harmony: theoretical implications. PhD dissertation, Indiana University. Published 1988, New York: Garland.Google Scholar
Ringen, C. (1977). Vowel harmony: implications for the alternation condition. In Dressier & Pfeiffer (1977). 127132.Google Scholar
Ringen, C. (1978). Another view of the theoretical implications of Hungarian vowel harmony. LI 9. 105115.Google Scholar
Ringen, C. (1980). A concrete analysis of Hungarian vowel harmony. In Vago (1980b). 135154.Google Scholar
Ringen, C. & Kontra, M. (1988). Hungarian neutral vowels. Ms, University of Iowa and Hungarian Academy of Sciences.Google Scholar
Sanders, G. (1974). Precedence relations in language. Foundations of Language II. 361400.Google Scholar
Steriade, D. (1987). Redundant values. In Bosch, et al. (1987). 339362.Google Scholar
Vago, R. (1976). Theoretical implications of vowel harmony. LI 7. 243263.Google Scholar
Vago, R. (1980a). A critique of suprasegmental theories of vowel harmony. In Vago (1980b). 155183.Google Scholar
Vago, R. (ed.) (1980b). Issues in vowel harmony. Amsterdam: John Benjamins.CrossRefGoogle Scholar