Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:04:19.100Z Has data issue: false hasContentIssue false

Assessing maize diversity and defining a representative subset by means of selected morphological ear traits

Published online by Cambridge University Press:  01 March 2018

Froylan Rincon-Sanchez*
Affiliation:
Departamento de Fitomejoramiento, Universidad Autonoma Agraria Antonio Narro, Buenavista, Saltillo, Coah, Mexico
Norma A. Ruiz-Torres
Affiliation:
Centro de Capacitacion y Desarrollo en Tecnologia de Semillas, UAAAN, Saltillo, Coahuila, Mexico
*
*Corresponding author. E-mail: frincon@uaaan.mx

Abstract

The objectives of this study were to analyse the maize diversity in the southeast of Coahuila State in Mexico and to identify a representative subset that encompasses the majority of the diversity in the region of study. Seventy-seven native maize populations were first explored and given a race classification followed by a morphological description based on selected quantitative ear traits using 10 representative ears from the collected samples. The differences between maize populations from the adaptation area and the relationships between and within groups in the region of study indicate the usefulness of the ear traits to describe maize diversity. Two main groups were identified that summarized the maize diversity. The first group, the conical ear complex, includes populations adapted to highland altitudes (Conico Norteño Race). The second group, the cylindrical ear complex, represents populations adapted to lowland and intermediate altitudes (Raton and Tuxpeño Norteño). Using the phenogram, a subset of 18 out of the 77 maize populations (23.4%) was defined that accounts for the variation between and within the different race complexes. This subset also includes at least one representative population from each of the less represented types. The final subset, representing a sample of maize diversity, can be used to establish strategies for conservation and use, such as participatory conservation and management, or it can be used to develop breeding techniques for improving the land race populations within the region of study.

Type
Research Article
Copyright
Copyright © NIAB 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, MVJ, Rincón, SF, Ramírez, SR, Colón, AOG and Razo, MMG (2011) Modelo Para la Conservación de Maíces Criollos en el Sureste de Coahuila. Saltillo Coahuila, México: Vicente Javier Aguirre Moreno.Google Scholar
Babic, V, Nikolic, A, Andjelkovic, V, Kovacevic, D, Filipovic, M, Vasic, V and Mladenovic-Drinic, S (2016) UPOV morphological versus molecular markers for maize inbred lines variability determination. Chilean Journal of Agricultural Research 76: 417426. doi: 10.4067/S0718-58392016000400004.Google Scholar
Beyene, Y, Botha, AM and Myburg, AA (2005) A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. African Journal of Biotechnology 4: 586595. doi: 10.5897/AJB2005.000-3107.Google Scholar
Brown, AHD (1989) The case for core collections. In: Brown, AHD, Frankel, OH, Marshall, DR and Williams, JT (eds) The Use of Plant Genetic Resources. Cambridge, UK: Cambridge University Press, pp. 136156.Google Scholar
Engels, JMM, Arora, RK and Guarino, L (1995) An introduction to plant germplasm exploration and collecting: planning, methods and procedures, follow-up. In: Guarino, L, Rao, RV and Reid, R (eds) Collecting Plant Genetic Diversity. Technical guidelines. Wallingford, UK: CAB International, pp. 3163.Google Scholar
Eyzaguirre, P and Iwanaga, M (1996) Farmer's contribution to maintaining genetic diversity in crops, and its role within the total genetic resources system. In: Eyzaguirre, P and Iwanaga, M (eds) Participatory Plant Breeding. Proceedings of a workshop on participatory plant breeding, 26–29 July 1995. Wageningen, The Netherlands, Rome, Italy: IPGRI, pp. 918.Google Scholar
Franco, J, Crossa, J, Warburton, ML and Taba, S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Science 46: 854864. doi: 10.2135/cropsci2005.07-0201.Google Scholar
Goodman, MM and Paterniani, E (1969) The races of maize: III. Choices of appropriate characters for racial classification. Economic Botany 23: 265273.Google Scholar
Govindaraj, M, Vetriventhan, M and Srinivasan, M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International 2015: Article ID 431487, 14 pages. http://dx.doi.org/10.1155/2015/431487.Google Scholar
Hernandez, XE (1985) Maize and man in the greater Southwest. Economic Botany 39: 416430.Google Scholar
IBPGR (1991) Descriptors for Maize. Rome, Italy: International Maize and Wheat Improvement Center. (CIMMYT) – International Board for Plant Genetic Resources (IBPGR), 88 p.Google Scholar
Kato, YTA, Mapes, SC, Mera, OLM, Serratos, HJA and Bye, BRA (2009) Origen y diversificación del maíz: Una Revisión Analítica. México, DF: Universidad Nacional Autónoma de México (UNAM) – Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).Google Scholar
Mera, OLM (2009) Diversificación y distribución reciente del maíz en México. In: Kato, YTA, Mapes, SC, Mera, OLM, Serratos, HJA and Bye, BRA (eds) Origen y Diversificación del Maíz: Una Revisión Analítica. México, DF: Universidad Nacional Autónoma de México (UNAM), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). pp. 6982.Google Scholar
Mohammadi, SA and Prasanna, B (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Science 43: 12351248. doi: 10.2135/cropsci2003.1235.Google Scholar
Ortega, PR (1985) Descripción de algunas razas mexicanas de maíz poco estudiadas. In: Variedades y razas mexicanas de maíz y su evaluación en cruzamientos con líneas de clima templado como material de partida para fitomejoramiento. Traducción al español por el autor. Tesis de grado Ph.D. Leningrado, URSS.Google Scholar
Ortiz, R, Crossa, J, Franco, J, Sevilla, R and Burguenño, J (2008) Classification of Peruvian highland maize races using plant traits. Genetic Resources and Crop Evolution 55: 151162. doi: 10.1007/s10722-007-9224-7.Google Scholar
Pinheiro de Carvalho, MAA, Teixeira, GJF, Abreu, I, Sousa, NF, Marques dos Santos, TM, Clemente, VMR and Motto, M (2008) Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira. Genetic Resources and Crop Evolution 55: 221233. doi: 10.1007/s10722-007-9230-9.Google Scholar
Rincon, F, Johnson, B, Crossa, J and Taba, S (1996) Cluster analysis, an approach to sampling variability in maize accessions. Maydica 41: 307316.Google Scholar
Rincón, SF, Castillo, GF, Ruiz, TNA, Illescas, PCN and Ramón, GL (2010a) Diversidad de los Maíces Nativos de Coahuila con base en Caracteres de la Mazorca. In: Rincón, SF, Castillo, GF and Ruiz, TNA (eds) Diversidad y Distribución de los Maíces Nativos en Coahuila. México: SOMEFI, Chapingo, pp. 1325.Google Scholar
Rincón, SF, Hernández, PCJ, Zamora, CF and Hernández, CJM (2010b) Recolección de maíces nativos de Coahuila 2008. In: Rincón, SF, Castillo, GF and Ruiz, TNA (eds) Diversidad y Distribución de los Maíces Nativos en Coahuila. México: SOMEFI, Chapingo, pp. 412.Google Scholar
Ristic, D, Babic, V, Andelkovic, V, Vancetovic, J, Mladenovic, S and Ignjatovic, D (2013) Genetic diversity in maize dent landraces assessed by morphological and molecular markers. Genetika 45: 811824. doi: 10.2298/GENSR1303811R.Google Scholar
Rohlf, FJ (2012) NTSYSpc: Numerical Taxonomy System. Ver. 2.21q for Windows. Setauket, New York: Exeter Software.Google Scholar
Ruiz, CJA, Durán, PN, Sánchez, GJJ, Ron, PJ, González, EDR, Holland, JB and Medina, GG (2008) Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science 48: 15021512. doi: 10.2135/cropsci2007.09.0518.Google Scholar
Sanchez, GJJ, Goodman, MM and Rawlings, JO (1993) Appropriate characters for racial classification in maize. Economic Botany 47: 4459.Google Scholar
SAS Institute (2004) SAS/STAT ® 9.1 User's Guide. Cary, NC, USA: SAS Institute Inc.Google Scholar
SIAP (2016) Anuario estadístico de la producción agrícola. Servicio de Información Agroalimentaria y Pesquera (SIAP). Available at: http://nube.siap.gob.mx/cierre_agricola/ (accessed 19 July 2017).Google Scholar
Sneath, PHA and Sokal, RR (1973) Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco, USA: W.H. Freeman.Google Scholar
Wellhausen, EJ, Roberts, LM, Hernández, XE and Mangelsdorf, PC (1951) Razas de Maiz en Mexico. Su Origen, Caracteristicas y Distribucion. Folleto Tecnico N° 5. Oficina de Estudios Especiales. Mexico: Secretaria de Agricultura y Ganaderia.Google Scholar
Yan, W (2012) GGEbiplot. Patter Explorer. Visual Statistical Analysis System. Ver. 7.8. Ontario, Canada: Data Analysis and Management System.Google Scholar
Yan, W and Kang, MS (2003) GGE Biplot Analysis. A Graphical Tool for Breeders, Geneticists and Agronomists. New York. USA: CRC Press LLC.Google Scholar
Yan, W and Tinker, NA (2006) Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science 86: 623645. https://doi.org/10.4141/P05-169.Google Scholar
Yonezawa, K, Nomura, T and Morishima, H (1995) Sampling strategies for use in stratified germplasm collections. In: Hodgkin, T, Brown, AHD, VanHintum, ThJL and Morales, EAV (eds) Core Collections of Plant Genetic Resources. Chichester, UK: John Wiley & Sons, pp. 3553.Google Scholar