Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T03:28:06.688Z Has data issue: false hasContentIssue false

Genetic diversity of Greek grapevine (Vitis vinifera L.) cultivars using ampelographic and microsatellite markers

Published online by Cambridge University Press:  01 December 2022

Athanasios L. Tsivelikas
Affiliation:
International Center for Agricultural Research in the Dry Areas (ICARDA), Genetic Resources Section, Av. Mohamed Belarbi Alaoui, Al-Irfane, 101 12 Rabat, Morocco
Evangelia V. Avramidou
Affiliation:
Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), Laboratory of Genetics and Biotechnology, Terma Alkmanos, 11528 Ilissia, Athens, Greece
Parthenopi E. Ralli
Affiliation:
Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), GR-57001 Thermi, Greece
Ioannis V. Ganopoulos
Affiliation:
Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), GR-57001 Thermi, Greece
Theodoros Moysiadis
Affiliation:
Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), GR-57001 Thermi, Greece Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
Aliki Kapazoglou
Affiliation:
Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), Laboratory of Plant Biotechnology & Genomic Resources, Kastorias 32A, GR-71307 Heraklion, Greece
Filippos A. Aravanopoulos
Affiliation:
Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
Andreas G. Doulis*
Affiliation:
Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization-DIMITRA (ex. N.AG.RE.F.), Laboratory of Plant Biotechnology & Genomic Resources, Kastorias 32A, GR-71307 Heraklion, Greece
*
Author for correspondence: Andreas G. Doulis, E-mail: andreasntoulis@yahoo.gr; doulis@elgo.gr

Abstract

Grapevine (Vitis vinifera L.) is a major worldwide crop of high economic importance, tightly interwoven with the traditions and the culture of many civilizations. The Greek vineyard is one of the oldest in the world composed of an ample number of highly diverse indigenous landraces. However, over the last decades the local cultivated grapevine germplasm has undergone a drastic reduction of diversity, due to the established market preferences for international varieties. In the current work a combined approach involving both, ampelographic traits and microsatellite markers has been undertaken, to study the genetic diversity within and among 96 grapevine genotypes belonging to 36 V. vinifera subsp. vinifera cultivars, predominantly representing autochthonous Greek landraces. Results revealed high genetic diversity for the Greek cultivars yielding a mean number of alleles per locus 14.69 and mean polymorphic information content 0.848. Hierarchical cluster analysis, employing both, ampelographic and microsatellite data, showed a clear distinction based on the origin of the germplasm; Anatolian versus Mediterranean. Principal component analysis, based on the most informative ampelographic traits, coupled to the results from genetic structure analysis further corroborated the proposal of germplasm differentiation on the basis of geographic origin. This information can be further utilized for the reconstitution of the Greek vineyard and can significantly contribute towards a rational conservation and utilization strategy for breeding or for direct cultivation of the Greek indigenous grapevine germplasm.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equal contribution.

References

Alba, V, Bergamini, C, Genghi, R, Gasparro, M, Perniola, R and Antonacci, D (2015) Ampelometric leaf trait and SSR loci selection for a multivariate statistical approach in Vitis vinifera L. biodiversity management. Molecular Biotechnology 57, 709719.CrossRefGoogle ScholarPubMed
Anglin, NL, Amri, A, Kehel, Z and Ellis, D (2018) A case of need: linking traits to genebank accessions. Biopreservation Biobanking 16, 337349.CrossRefGoogle ScholarPubMed
Aradhya, MK, Dangl, GS, Prins, BH, Boursiquot, J, Walker, MA, Meredith, CP and Simon, CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genetics Research 81, 179192.CrossRefGoogle ScholarPubMed
Arroyo-Garcia, R, Ruiz-Garcia, L, Bolling, L, Ocete, R, Lopez, MA, Arnold, C, Ergul, A, Soylemezoglu, G, Uzun, HI, Cabello, F, Ibanez, J, Aradhya, MK, Atanassov, A, Atanassov, I, Balint, S, Cenis, JL, Costantini, L, Goris-Lavets, S, Stella Grando, M, Klein, BY, McGovern, PE, Merdinoglu, D, Pejic, I, Pelsy, F, Primikirios, N, Risovannaya, V, Roubelakis-Angelakis, KA, Snoussi, H, Sotiri, P, Tamhankar, S, This, P, Troshin, L, Malpica, JM, Lefort, F and Martinez-Zapater, JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology 15, 37073714.CrossRefGoogle ScholarPubMed
Bacilieri, R, Lacombe, T, Le Cunff, L, Di Vecchi-Staraz, M, Laucou, V, Genna, B, Péros, J-P, This, P and Boursiquot, J-M (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biology 13, 25. https://doi.org/10.1186/1471-2229-13-25.CrossRefGoogle ScholarPubMed
Basheer-Salimia, R, Lorenzi, S, Batarseh, F, Moreno-Sanz, P, Emanuelli, F and Stella Grando, M (2014) Molecular identification and genetic relationships of Palestinian grapevine cultivars. Molecular Biotechnology 56, 546556.CrossRefGoogle ScholarPubMed
Bibi, AC, Gonias, ED and Doulis, AG (2020) Genetic diversity and structure analysis assessed by SSR markers in a large collection of Vitis cultivars from the island of Crete, Greece. Biochemical Genetics 58, 294321.CrossRefGoogle Scholar
Cipriani, G, Marrazzo, MT, Di Gaspero, G, Pfeiffer, A, Morgante, M and Testolin, R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biology 8, 127.CrossRefGoogle ScholarPubMed
Costantini, L, Moreno-Sanz, P, Nwafor, CC, Lorenzi, S, Marrano, A, Cristofolini, F, Gottardini, E, Raimondi, S, Ruffa, P, Gribaudo, I, Schneider, A and Grado, MS (2021) Somatic variants for seed and fruit set in grapevine. BMC Plant Biology 21, 133. doi: 10.1186/s12870-021-02865-2CrossRefGoogle ScholarPubMed
De Michele, R, La Bella, F, Gristina, AS, Fontana, I, Pacifico, D, Garfi, G, Motisi, A, Crucitti, D, Abbate, L and Carimi, F (2019) Phylogenetic relationship among wild and cultivated grapevine in Sicily: a hotspot in the middle of the Mediterranean basin. Frontiers in Plant Science 10, 1506.CrossRefGoogle ScholarPubMed
Emanuelli, F, Lorenzi, S, Grzeskowiak, L, Catalano, V, Stefanini, M, Troggio, M, Myles, S, Martinez-Zapater, JM, Zyprian, E, Moreira, FM and Stella Grando, M (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology 13. https://doi.org/10.1186/1471-2229-13-39.CrossRefGoogle Scholar
Ergül, A, Perez-Rivera, G, Söylemezoğlu, G, Kazan, K and Arroyo-Garcia, R (2011) Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genetic Resources: Characterization and Utilization 9, 375383.CrossRefGoogle Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Falush, D, Stephens, M and Pritchard, JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 15671587.CrossRefGoogle ScholarPubMed
Farris, JS (1969) On cophenetic correlation coefficients. Systematic Zoology 18, 279285.CrossRefGoogle Scholar
Fedosov, DY, Korzhenkov, AA, Petrova, KO, Sapsay, AO, Sharko, FS, Toshchakov, SV, Kolosova, AA, Bakhmutova, ED and Patrushev, MV (2021) SNP-based analysis reveals authenticity and genetic similarity of Russian indigenous V. vinifera grape cultivars. Plants 10, 112. https://doi.org/10.3390/plants10122696.CrossRefGoogle ScholarPubMed
Foxhall, L (1998) Cargoes of the heart's desire: the character of trade in the archaic Mediterranean world. In Fisher, N and Van Wees, N (eds), Archaic Greece. New Approaches and New Evidence. London: Duckworth, pp. 295309.CrossRefGoogle Scholar
Gago, P, Santiago, J-L, Boso, S, Alonso-Villaverde, V, Stella Grando, M and Martínez, MC (2009) Biodiversity and characterization of twenty-two Vitis vinifera L. cultivars in the northwestern Iberian Peninsula. American Journal of Enology and Viticulture 60, 293301.CrossRefGoogle Scholar
Galet, P (1979) A Practical Ampelography: Grapevine Identification. Ithaca, New York: Comstock Pub. Associates.Google Scholar
Ghaffari, S, Hasnaoui, N, Zinelabidine, LH, Ferchichi, A, Martinez-Zapater, JM and Ibáñez, J (2014) Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genetics & Genomes 10, 11031112.Google Scholar
Grassi, F, Labra, M, Imazio, S, Spada, A, Sgorbati, S, Scienza, A and Sala, F (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theoretical and Applied Genetics 107, 13151320.CrossRefGoogle ScholarPubMed
Hellenic Statistical Authority (2015) Wine grape varieties with at least 5000 stremmas in country, total. Area by age class. https://www.statistics.gr/en/statistics/-/publication/SPG63/2015.Google Scholar
Hvarleva, T, Hadjinicoli, A, Atanassov, I, Atanassov, A and Ioannou, N (2005) Genotyping Vitis vinifera L. cultivars of Cyprus by microsatellite analysis. Vitis 44, 9397.Google Scholar
Kaiser, HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187200.CrossRefGoogle Scholar
Kehel, Z, Sanchez-Garcia, M, El Baouchi, A, Aberkane, H, Tsivelikas, A, Charles, C and Amri, A (2020) Predictive characterization for seed morphometric traits for genebank accessions using genomic selection. Frontiers in Ecology and Evolution 8, 32.CrossRefGoogle Scholar
Kotinis, C (1985) Ampelographic Atlas of Greece. Ministry of Agriculture, Directorate of Agricultural Training and Information, Section Agricultural Applications, Athens, Greece, in Greek with French summary, p. 560.Google Scholar
Krimbas, V (1943) Greek Ampelography; Vol. 1. Ministry of Agriculture, Athens, Greece, in Greek.Google Scholar
Lacombe, T, Boursiquot, JM, Laucou, V, Di Vecchi-Staraz, M, Péros, J-P and This, P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theoretical and Applied Genetics 126, 401414.CrossRefGoogle Scholar
Laucou, V, Lacombe, T, Dechesne, F, Siret, R, Bruno, J-P, Dessup, M, Dessup, T, Ortigosa, P, Parra, P, Roux, C, Santoni, S, Varès, D, Péros, J-P, Boursiquot, J-M and This, P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics 122, 12331245.CrossRefGoogle ScholarPubMed
Laucou, V, Launay, A, Bacilieri, R, Lacombe, T, Adam-Blondon, A-F, Bérard, A, Chauveau, A, de Andrés, MT, Hausmann, L, Ibáñez, J, Le Paslier, M-C, Maghradze, D, Martinez-Zapater, JM, Maul, E, Ponnaiah, M, Töpfer, R, Péros, J-P and Boursiquot, J-M (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 13, e0192540.CrossRefGoogle ScholarPubMed
Lefort, F and Roubelakis-Angelakis, KKA (2001) Genetic comparison of Greek cultivars of Vitis vinifera L by nuclear microsatellite profiling. American Journal of Enology and Viticulture 52, 101108.CrossRefGoogle Scholar
Levadoux, LD (1956) Les populations sauvages et cultivées de Vitis vinifera L. Annales de la'Amélioration des Plantes 1, 59118.Google Scholar
Logothetis, B (1947) Contribution à l'Ampélographie Hellénique. Diplôme d'honneur de l'office International du Vin. Athènes, Greece, p. 110.Google Scholar
Martínez, LE, Cavagnaro, PF, Masuelli, RW and Zúñiga, M (2006) SSR-based assessment of genetic diversity in South American Vitis vinifera varieties. Plant Science 170, 10361044.CrossRefGoogle Scholar
Mattheou, A, Zioziou, E, Pitsoli, T and Tsivelikas, A (2006) Comparative ampelographic study of 45 rare indigenous wine grapevine cultivars (Vitis vinifera L.). Agricultural Research 29, 95104, in Greek with English abstract.Google Scholar
Merkouropoulos, G, Michailidou, S, Alifragkis, A, Zioziou, E, Koundouras, S, Argiriou, A and Nikolaou, N (2015) A combined approach involving ampelographic description, berry oenological traits and molecular analysis to study native grapevine varieties of Greece. Vitis 54, 99103.Google Scholar
Migliaro, D, De Nardi, B, Vezzulli, S and Crespan, M (2017) An upgraded core set of 11 SSR markers for grapevine cultivar identification: the case of berry-color mutants. American Journal of Enology and Viticulture 68, 496498.CrossRefGoogle Scholar
Milligan, GW and Cooper, M (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159179.CrossRefGoogle Scholar
Mohammadi, SA and Prasanna, BM (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Science 43, 12351248.CrossRefGoogle Scholar
Nebish, A, Tello, J, Ferradás, Y, Aroutiounian, R, Martínez-Zapater, JM and Ibáñez, J (2021) SSR and SNP genetic profiling of Armenian grape cultivars gives insights into their identity and pedigree relationships. Oeno One 55, 101114. doi: 10.20870/oeno-one.2021.55.4.4815CrossRefGoogle Scholar
Negrul, AM (1938) Evolution of cultivated forms of grapes. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 18, 585588.Google Scholar
Negrul, AM (1946) Origin and classification of cultured grape. In Baranoc, A, Kai, YF, Lazarevski, MA, Palibin, TV and Prosmoserdov, NN (eds), The Ampelography of the USSR; vol. I, Moscow: Pischepromizdat, pp. 159216.Google Scholar
Nei, M and Li, WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76, 52695273.CrossRefGoogle ScholarPubMed
Nicolas, SD, Péros, JP, Lacombe, T, Launay, A, Le Paslier, M-C, Bérard, A, Mangin, B, Valiére, S, Martins, F, Le Cunff, L, Laucou, V, Bacilieri, R, Dereeper, A, Chatelet, P, This, P and Doligez, A (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L.) diversity panel newly designed for association studies. BMC Plant Biology 16, 119. https://doi.org/10.1186/s12870-016-0754-z.CrossRefGoogle ScholarPubMed
Odong, TL, van Heerwaarden, J, Jansen, J, van Hintum, TJL and van Eeuwijk, FA (2011) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theoretical and Applied Genetics 123, 195205.CrossRefGoogle ScholarPubMed
OIV (2009) OIV Descriptor List for Grape Varieties and Vitis Species. 2nd edn. Paris, France: Organisation Internationale de la Vigne et du Vin, p. 232.Google Scholar
OIV (2019) OIV protocol for identification of varieties. RESOLUTION OIV-VITI 609–2019, p. 6.Google Scholar
Olmo, HP (1996) The origin and domestication of the Vinifera grape. In McGovern, PE, Fleming, SJ and Katz, SH (eds). The Origin and Ancient History of Wine. New York: Gordon and Breach, pp. 3143.Google Scholar
OPEKEPE (2019) Greek Payment Authority of Common Agricultural Policy (C.A.P.) Aid Schemes. http://aggregate.opekepe.gr/.Google Scholar
Ortiz, JM, Martín, JP, Borrego, J, Chávez, J, Rodríguez, I, Muñoz, G and Cabello, F (2004) Molecular and morphological characterization of a Vitis gene bank for the establishment of a base collection. Genetic Resources and Crop Evolution 51, 403409.CrossRefGoogle Scholar
Paetkau, D, Calvert, W, Stirling, I and Strobeck, C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4, 347354.CrossRefGoogle ScholarPubMed
Pagnoux, C, Bouby, L, Ivorra, S, Petit, C, Valamoti, S-M, Pastor, T, Picq, S and Terral, J-F (2015) Inferring the agrobiodiversity of Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Vegetation History and Archaeobotany 24, 7584.CrossRefGoogle Scholar
Preiner, D, Safner, T, Karoglan Kontić, J, Marković, Z, Šimon, S and Maletić, E (2014) Analysis of phyllometric parameters efficiency in discrimination of Croatian native V. vinifera cultivars. Vitis 53, 215217.Google Scholar
Rakonjac, V, Korac, N, Todic, S, Medic, M, Beslic, Z, Kuljanic, I, Ivanisevic, D and Popov, M (2014) Genetic diversity of a Serbian grapevine germplasm collection based on morphoagronomic characteristics. Genetika 46, 719730.CrossRefGoogle Scholar
Renfrew, JM (1996) Palaeoethnobotanical finds of Vitis from Greece in the Near East. In McGovern, PE, Fleming, SJ and Katz, SH (eds). The Origin and Ancient History of Wine. New York: Gordon and Breach, pp. 264277.Google Scholar
Sánchez-Escribano, EM, Martin, JP, Carreno, J and Cenis, JL (1999) Use of sequence-tagged microsatellite site markers for characterizing table grape cultivars. Genome 42, 8793.CrossRefGoogle Scholar
Sefc, KM, Lopes, MS, Lefort, F, Botta, R, Roubelakis-Angelakis, KA, Ibáñez, J, Pejić, I, Wagner, HW, Glössl, J and Steinkellner, H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theoretical and Applied Genetics 100, 498505.CrossRefGoogle Scholar
Sefc, KM, Pejic, I, Maletic, E, Thomas, MR and Lefort, F (2009) Microsatellite markers for grapevine: tools for cultivar identification and pedigree reconstruction. In: Roubelakis-Angelakis, KA (ed.), Grapevine Molecular Physiology and Biotechnology. 2nd edn. Dordrecht: Springer, pp. 565596. https://doi.org/10.1007/978-90-481-2305-6.CrossRefGoogle Scholar
Štajner, N, Tomić, L, Ivanišević, D, Korać, N, Cvetković-Jovanović, T, Beleski, K, Angelova, E, Maraš, V and Javornik, B (2014) Microsatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genetics & Genomes 10, 127140.CrossRefGoogle Scholar
Stavrakaki, M, Bouza, D and Biniari, K (2019) Differentiation of Greek grapevine cultivars (Vitis vinifera L.) based on the combination of ampelographic description and microsatellite markers. Genetic Resources and Crop Evolution 67, 2140.CrossRefGoogle Scholar
Stavrakas, ED (2010) Ampelography. Thessaloniki, Greece: Ziti edt., p. 607 (in Greek).Google Scholar
This, P, Lacombe, T and Thomas, MR (2006) Historical origins and genetic diversity of wine grapes. Trends in Genetics 22, 511519.CrossRefGoogle ScholarPubMed
Tomažič, I and Korošec-Koruza, Z (2003) Validity of phyllometric parameters used to differentiate local Vitis vinifera L. cultivars. Genetic Resources and Crop Evolution 50, 773778.CrossRefGoogle Scholar
Tsiolas, G, Michailidou, S, Tsoureki, A and Argiriou, A (2022) Genomic data of two Greek Vitis varieties. Data in Brief 42, 16. doi: 10.1016/j.dib.2022.108216CrossRefGoogle ScholarPubMed
Valamoti, SM, Pagnoux, C, Ntinou, M, Bouby, L, Bonhomme, V and Terral, JF (2020) More than meets the eye: new archaeobotanical evidence on Bronze Age viticulture and wine making in the Peloponnese, Greece. Vegetation History and Archaeobotany 29, 3550.CrossRefGoogle Scholar
Villano, C, Carputo, D, Frusciante, L, Santoro, X and Aversano, R (2014) Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from southern Italy. Molecular Biotechnology 56, 10111020.CrossRefGoogle ScholarPubMed
Zdunić, G, Preece, JE, Aradhya, M, Velasco, D, Koehmstedt, A and Dangl, GS (2014) Genetic diversity and differentiation within and between cultivated (Vitis vinifera L. ssp. sativa) and wild (Vitis vinifera L. ssp. sylvestris) grapes. Vitis 52, 2932.Google Scholar
Zhang, C, Cui, L and Fang, J (2022) Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC Plant Biology 22, 119. doi: 10.1186/s12870-022-03434-xCrossRefGoogle ScholarPubMed
Zohary, D (1996) The domestication of the grapevine Vitis vinifera L. in the Near East. In McGovern, PE, Fleming, SJ and Katz, SH (eds). The Origin and Ancient History of Wine. New York: Gordon and Breach, pp. 2128.Google Scholar
Zohary, D, Hopf, M and Weiss, E (2012) Domestication of Plant in the Old World, 4th edn. New York: Oxford University Press Inc., pp. 121126.CrossRefGoogle Scholar
Supplementary material: File

Tsivelikas et al. supplementary material

Tsivelikas et al. supplementary material

Download Tsivelikas et al. supplementary material(File)
File 783.3 KB