Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:19:31.696Z Has data issue: false hasContentIssue false

Molecular characterization of almond accessions from the island of La Palma (Canary Islands, Spain) using SSR markers

Published online by Cambridge University Press:  27 February 2014

Guillermo Padilla*
Affiliation:
Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Santa Cruz de Tenerife, Spain
Rafel Socias i Company
Affiliation:
Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059 Zaragoza, Spain
Amando Ordás
Affiliation:
Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Apdo. 28, 36080 Pontevedra, Spain
*
* Corresponding author. E-mail: gpadilla@cib.csic.es

Abstract

In this study, 15 simple sequence repeat (SSR) markers were used for genetic diversity analysis of 45 almond accessions, which included 25 local cultivars from La Palma Island and three other commercial cultivars. A total of 110 amplification fragments were produced, with an average value of 7.9 alleles per locus. Twelve of the SSR markers can be considered as highly informative, with values of expected heterozygosity and power of discrimination above 0.5 and 0.8, respectively. Due to cases of synonymy and homonymy, 37 different genetic profiles were obtained, with the homonymy of the soft-shell varieties known as ‘Mollar’ being the most significant. Cluster analysis identified four groups within the accessions. One of these groups exclusively consisted of the two commercial cultivars ‘Guara’ and ‘Ferraduel’. The other commercial cultivar used in the study, ‘Desmayo Largueta’, was in a cluster with three cultivars from the same locality. The analysis of molecular variance revealed that the within-localities component accounts for most of the total variation, suggesting that La Palma almond cultivars did not originate independently in different parts of the island. The results of the study reveal the genetic singularity of La Palma almond cultivars and the genetic diversity among them.

Type
Research Article
Copyright
Copyright © NIAB 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADER (Asociación para el Desarrollo Rural de la isla de La Palma)(2002) Estudio de caracterización del almendro en la palma. La Palma: Consejería de Agricultura, Ganadería y Pesca del Cabildo Insular de, pp. 1140.Google Scholar
Agarwal, M, Shrivastava, N and Padh, H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27: 617631.Google Scholar
Alonso, JM, Ansón, JM, Espiau, MT and Socias i Company, R (2005) Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. Journal of the American Society for Horticultural Science 130: 308318.Google Scholar
Aranzana, MJ, Garcia-Mas, J, Carbó, J and Arús, P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breeding 121: 8792.CrossRefGoogle Scholar
Aranzana, MJ, Abbassi, EK, Howad, W and Arús, P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics 11: 69.Google Scholar
Borja-González, C (2009) Localización y caracterización de las variedades tradicionales de almendro [Prunus dulcis (Mill.)] en la isla de San Miguel de La Palma. Dissertation, University of La Laguna..Google Scholar
Bouhadida, M, Moreno, MA, Gonzalo, MJ, Alonso, JM and Gogorcena, Y (2011) Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genetics & Genomes 7: 257270.Google Scholar
Cantini, C, Iezzoni, AF, Lamboy, WF, Boritzki, M and Struss, D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. Journal of the American Society for Horticultural Science 126: 205209.Google Scholar
Dirlewanger, E, Cosson, P, Travaud, M, Aranzana, MJ, Poizat, C, Zanetto, A, Arús, P and Laigret, F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theoretical and Applied Genetics 105: 127138.Google Scholar
Espiau, MT, Ansón, JM and Socias i Company, R (2002) The almond germplasm bank of Zaragoza. Acta Horticulturae 591: 275278.Google Scholar
Excoffier, L, Smouse, P and Quattro, J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479491.Google Scholar
Excoffier, L, Laval, G and Schneider, S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 4750.Google Scholar
Fernández i Martí, A, Alonso, JM, Espiau, MT, Rubio-Cabetas, MJ and Socias i Company, R (2009) Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. Journal of the American Society for Horticultural Science 134: 535542.CrossRefGoogle Scholar
Fitzpatrick, BM (2009) Power and sample size for nested analysis of molecular variance. Molecular Ecology 18: 39613966.CrossRefGoogle ScholarPubMed
Gouta, H, Ksia, E, Buhner-Zaharieva, T, Mliki, A and Gogorcena, Y (2012) Development of an SSR-based identification key for Tunisian local almonds. Scientia Agricola 69: 108113.Google Scholar
Gupta, PK, Balyan, HS, Sharma, PC and Ramesh, B (1996) Microsatellites in plants: a new class of molecular markers. Current Science 70: 4554.Google Scholar
Hormaza, JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics 104: 321328.Google Scholar
Kadkhodaei, S, Shahnazari, M, Nekouei, MK, Ghasemi, M, Etminani, H, Imani, A and Ariff, AB (2011) A comparative study of morphological and molecular diversity analysis among cultivated almonds (Prunus dulcis). Australian Journal of Crop Science 5: 8291.Google Scholar
Kloosterman, AD, Budowle, B and Daselaar, P (1993) PCR-amplification and detection of the human D1S80 VNTR locus. Amplification conditions, population genetics and application in forensic analysis. International Journal of Legal Medicine 105: 257264.Google Scholar
Maghuly, F, Fernandez, EB, Ruthner, SZ, Pedryc, A and Laimer, M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics & Genomes 1: 151165.Google Scholar
Martínez-Gómez, P, Arulsekar, S, Potter, D and Gradziel, TM (2003) An extended interspecific gene pool available to peach and almond breeding characterized using simple sequence repeat (SSR) markers. Euphytica 131: 313322.Google Scholar
Mnejja, M, Garcia-Mas, J, Howad, W, Badenes, ML and Arús, P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes 5: 531535.Google Scholar
Mnejja, M, Garcia-Mas, J, Audergon, JM and Arús, P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genetics & Genomes 6: 689700.Google Scholar
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70: 33213323.Google Scholar
Nei, M and Li, WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA 76: 52695273.Google Scholar
Pedryc, A, Ruthner, S, Herman, R, Krska, B, Hegedus, A and Halasz, J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Scientia Horticulturae 121: 1926.Google Scholar
Rohlf, FJ (1998) NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Version 2.1. New York: EXETER Software.Google Scholar
Romero, C, Pedryc, A, Muñoz, V, Llácer, G and Badenes, ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244252.Google Scholar
Socias i Company, R (1990) Breeding self-compatible almonds. In: Janick, J (ed.) Plant Breeding Reviews. vol. 8. Hoboken, NJ: John Wiley & Sons, Inc, pp. 313338.CrossRefGoogle Scholar
Socias i Company, R (1998) Fruit tree genetics at a turning point: the almond example. Theoretical and Applied Genetics 96: 588601.Google Scholar
Socias i Company, R, Kodad, O, Alonso, JM and Gradziel, TM (2008) Almond quality: a breeding perspective. Horticultural Reviews 34: 197238.Google Scholar
Sokal, RR and Rohlf, FJ (1962) The comparison of dendrograms by objective methods. Taxon 11: 3340.Google Scholar
Stanys, V, Baniulis, D, Morkunaite-Haimi, S, Siksnianiene, JB, Frercks, B, Gelvonauskiene, D, Stepulaitiene, I, Staniene, G and Siksnianas, T (2012) Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Scientia Horticulturae 142: 136142.Google Scholar
Struss, D, Ahmad, R, Southwick, SM and Boritzk, M (2003) Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. Journal of the American Society for Horticultural Science 128: 904909.Google Scholar
Wright, S (1951) The genetical structure of populations. Annals of Eugenics 15: 323354.Google Scholar
Wünsch, A and Hormaza, JI (2004) Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genetic Resources and Crop Evolution 51: 635641.Google Scholar