Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T14:20:13.526Z Has data issue: false hasContentIssue false

Phenotypic diversity and capsaicinoid content of chilli pepper landraces (Capsicum spp.) from the Yucatan Peninsula

Published online by Cambridge University Press:  12 April 2021

C. C. Castillo-Aguilar
Affiliation:
Colegio de Posgraduados, Campus Campeche. Sihochac, Champotón, Campeche
L. C. López Castilla
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Conkal, Yucatán, Avenida Tecnológico S/N Conkal, C.P. 97345Conkal, Yucatán, México
N. Pacheco
Affiliation:
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Parque Científico Tecnológico de Yucatán, km 5.5. Carretera Sierra Papacal – Chuburná Puerto, Mérida, Yucatán97302, México
J. C. Cuevas-Bernardino
Affiliation:
CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Parque Científico Tecnológico de Yucatán, km 5.5. Carretera Sierra Papacal – Chuburná Puerto, Mérida, Yucatán97302, México
R. Garruña
Affiliation:
CONACYT – Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, Conkal, Yucatán97345, México
R. H. Andueza-Noh*
Affiliation:
CONACYT – Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, Conkal, Yucatán97345, México
*
*Corresponding author. E-mail: r_andueza81@hotmail.com

Abstract

Mexico has a wealth of plant genetic resources, including Capsicum species. In southern Mexico, specifically in the western part of the Yucatan Peninsula, Maya farmers have preserved a great diversity of chilli pepper landraces of C. annuum, C. frutescens and C. chinense. However, the morphological diversity, capsaicinoid content, conservation status and potential use of these species have not been studied. To fill this gap and generate information to support the conservation and use of these species, we characterized the phenotypic diversity and capsaicinoid content for nine chilli pepper landraces from the western Yucatan Peninsula by assessing 15 quantitative and 39 qualitative traits for 10 plants of each landrace. For quantitative variables, two groups of chilli pepper landraces were obtained by principal component analysis and cluster analysis. Group I was formed by Rosita, Bobo, Dulce, Xcat'ik1, Xcat'ik2 and Verde landraces; Group II included the Maax, Bolita and Pico Paloma landraces. For qualitative variables, three groups of chilli pepper landraces were obtained; Group I included Dulce, Bobo, Xcat'ik1, Xcat'ik2 and Verde landraces, Group II only included the Rosita landrace, and Group III included Maax, Bolita and Pico Paloma landraces. Ultra-performance liquid chromatography–photodiode array (UPLC-PDA) quantification of capsaicinoids indicated higher values in landraces Rosita (14,062.3 μg/g D.W), Bolita (5928.1 μg/g D.W), Maax (3438.4 μg/g D.W) and Pico Paloma (3138.9 μg/g D.W). The Yucatan chilli pepper landraces provide valuable diverse germplasm for morphological characteristics and capsaicinoid content that can be used in breeding and conservation programmes.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, MA, Syazwanie, NF, Mahmod, NH, Badaluddin, NA, Mustafa, KA, Alias, N and Prodhan, MA (2018) Evaluation of antioxidant compounds, antioxidant activities and capsaicinoid compounds of chili (Capsicum sp.) germplasms available in Malaysia. Journal of Applied Research on Medicinal and Aromatic Plants 9: 4654.CrossRefGoogle Scholar
Ananthan, R, Subhash, K and Longvah, T (2018) Capsaicinoids, amino acid and fatty acid profiles in different fruit components of the world hottest Naga king chilli (Capsicum chinense Jacq). Food Chemistry 238: 5157.CrossRefGoogle Scholar
Antonio, AS, Wiedemann, LSM and Veiga Junior, VF (2018) The genus: Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances 8: 2576725784.CrossRefGoogle Scholar
AOAC (2005) Official Method of Analysis, 18th edn. Association of Officiating Analytical Chemists, Washington DC, Method 935.14 and 992.24.Google Scholar
Canto-Flick, A, Balam-Uc, E, Bello-Bello, JJ, Lecona-Guzmán, C, Solís-Marroquín, D, Avilés-Viñas, S, Gómez-Uc, E, López-Puc, G, Santana-Buzzy, N and Iglesias-Andreu, LG (2008) Capsaicinoids content in Habanero pepper (Capsicum chinense Jacq.): hottest known cultivars. HortScience 43: 13441349.CrossRefGoogle Scholar
Carvalho, S, Ragassi, C, Bianchetti, L, Reifschneider, F, Buso, G and Faleiro, F (2014) Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin). Genetics and Molecular Research 13: 74477464.CrossRefGoogle Scholar
Cisneros-Pineda, O, Torres-Tapia, LW, Gutiérrez-Pacheco, LC, Contreras-Martín, F, González-Estrada, T and Peraza-Sánchez, SR (2007) Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chemistry 104: 17551760.CrossRefGoogle Scholar
Collins, D, Wasmund, MML and Bosland, PW (1995) Improved method for quantifying capsaicinoids in capsicum using high performance liquid chromatography. HortScience 30: 137139.CrossRefGoogle Scholar
De la Cruz Lázaro, E, Márquez Quiroz, C, Osorio Osorio, R, Preciado Rangel, P and Márquez Hernández, C (2017) In situ characterization of morphological diversity of wild pepper Pico de paloma (Capsicum frutescens L.) in Tabasco, Mexico. Acta Universitaria 27: 1016.CrossRefGoogle Scholar
del López Castilla, LC, Hernández, RG, Castillo Aguilar, CC, Martínez-Hernández, A, Ortiz-García, MM and Andueza-Noh, RH (2019) Structure and genetic diversity of nine important landraces of Capsicum species cultivated in the Yucatan Peninsula, Mexico. Agronomy 9: 17.Google Scholar
Fabela-Morón, MF, Cuevas-Bernardino, JC, Ayora-Talavera, T and Pacheco, N (2019) Trends in capsaicinoids extraction from Habanero chili pepper (Capsicum chinense Jacq.): recent advanced techniques. Food Reviews International. 36: 105134. https://doi.org/10.1080/87559129.2019.1630635.CrossRefGoogle Scholar
FAO (2021) FAOSTAT – statistical data base. Rome (access in: http://www.fao.org/faostat/en/#data/QC).Google Scholar
Fayos, O, Savirón, M, Orduna, J, Barbero, GF, Mallor, C and Garcés-Claver, A (2019) Quantitation of capsiate and dihydrocapsiate and tentative identification of minor capsinoids in pepper fruits (Capsicum spp.) by HPLC-ESI-MS/MS(QTOF). Food Chemistry 270: 264272.CrossRefGoogle Scholar
Florentino-Ramos, E, Villa-Ruano, N, Hidalgo-Martínez, D, Ramírez-Meraz, M, Méndez-Aguilar, R, Velásquez-Valle, R, Zepeda-Vallejo, LG, Pérez-Hernández, N and Becerra-Martínez, E (2019) 1 H NMR-based fingerprinting of eleven Mexican Capsicum annuum cultivars. Food Research International 121: 1219.CrossRefGoogle ScholarPubMed
Ghalmi, N, Malice, M, Jacquemin, J-M, Ounane, S-M, Mekliche, L and Baudoin, J-P (2010) Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genetic Resources and Crop Evolution 57: 371386.CrossRefGoogle Scholar
González, ET, Casanova, CC, Gutiérrez, LP, Torres, LT, Contreras, FM and Peraza, SS (2010) Chiles cultivados en Yucatán. In: Durán, R and Méndez, M (eds) Biodiversidad y Desarrollo Humano en Yucatán. Yucatan: Mexico, CICY CONABIO, SEDUMA, pp. 342344.Google Scholar
González-Zamora, A, Sierra-Campos, E, Luna-Ortega, JG, Pérez-Morales, R, Rodríguez Ortiz, JC and García-Hernández, JL (2013) Characterization of different Capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 18: 1347113486.CrossRefGoogle ScholarPubMed
Gu, XZ, Cao, YC, Zhang, ZH, Zhang, BX, Zhao, H, Zhang, XM, Wang, HP, Li, XX and Wang, LH (2019) Genetic diversity and population structure analysis of Capsicum germplasm accessions. Journal of Integrative Agriculture 18: 13121320.CrossRefGoogle Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontological Electron 4: 49.Google Scholar
IPGRI, AVR and DC (Avrdc), TAR and TC (1995) Descriptors for Capsicum (Capsicum spp.). In Eindbaas. https://doi.org/10.1089/jmf.2011.1609.CrossRefGoogle Scholar
Islam, MA, Sharma, SS, Sinha, P, Negi, MS, Neog, B and Tripathi, SB (2015) Variability in capsaicinoid content in different landraces of Capsicum cultivated in north-eastern India. Scientia Horticulturae 183: 6671.CrossRefGoogle Scholar
Kethom, W, Tongyoo, P and Mongkolporn, O (2019) Genetic diversity and capsaicinoids content association of Thai chili landraces analyzed by whole genome sequencing-based SNPs. Scientia Horticulturae 249: 401406.CrossRefGoogle Scholar
Lahbib, K, Dabbou, S, Bok, SEL, Pandino, G, Lombardo, S and Gazzah, MEL (2017) Variation of biochemical and antioxidant activity with respect to the part of Capsicum annuum fruit from Tunisian autochthonous cultivars. Industrial Crops and Products 104: 164170.CrossRefGoogle Scholar
Morales-Soriano, E, Kebede, B, Ugás, R, Grauwet, T, Van Loey, A and Hendrickx, M (2018) Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International 109: 250259.CrossRefGoogle ScholarPubMed
Moreira, AFP, Ruas, PM, de Ruas, CF, Baba, VY, Giordani, W, Arruda, IM, Rodrigues, R, Simões, L and Gonçalves, LSA (2018) Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Scientia Horticulturae 236: 19.CrossRefGoogle Scholar
Narez-Jiménez, CA, de-la-Cruz-Lázaro, E, Gómez-Vázquez, A, Cruz-Hernández, A, Márquez-Quiroz, C and Castañón-Nájera, G (2014) In situ morphological diversity of wild peppers (Capsicum spp.) in tabasco, México. Revista Fitotecnia Mexicana 37: 209215.CrossRefGoogle Scholar
Naves, ER, de Ávila Silva, L, Sulpice, R, Araújo, WL, Nunes-Nesi, A, Peres, LEP and Zsögön, A (2019) Capsaicinoids: pungency beyond Capsicum. Trends in Plant Science 24: 109120.CrossRefGoogle ScholarPubMed
Orellana-Escobedo, LE, Garcia-Amezquita, GI, Olivas, JJ, Ornelas, P and Sepulveda, DR (2013) Capsaicinoids content and proximate composition of Mexican chili peppers (Capsicum spp.) cultivated in the State of Chihuahua. CyTA-Journal of Food 11: 179184.CrossRefGoogle Scholar
Orobiyi, A, Loko, LY, Sanoussi, F, Agré, AP, Korie, N, Gbaguidi, A, Adjatin, A, Agbangla, C and Dansi, A (2018) Agro-morphological characterization of chili pepper landraces (Capsicum annuum L.) cultivated in Northern Benin. Genetic Resources and Crop Evolution 65: 555569.CrossRefGoogle Scholar
Piña-Razo, J (1982) Habanero Inia y Habanero Uxmal: Nuevas variedades de chile para la península de Yucatán. Yucatán, México: Secretaría de Agricultura y Recursos Hidráulicos INIA-SARH.Google Scholar
Pino, J, González, M, Ceballos, L, Centurión-Yah, AR, Trujillo-Aguirre, J, Latournerie-Moreno, L and Sauri-Duch, E (2007) Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense Jack.) cultivars grown in Yucatan. Food Chemistry 104: 16821686.CrossRefGoogle Scholar
Smith, PC and Heiser, CB (1957) Taxonomy of Capsicum sinense Jacq. and the geographic distribution of cultivated Capsicum species. Bulletin of the Torrey Botanical Club 34: 413420.CrossRefGoogle Scholar
Soria-Fregoso, M, Trejo-Rivero, JA, Tun-Suárez, JM and Terán-Saldivar, R (2002) Paquete TecnolóGico Para la Producción de Chile Habanero, 3rd edn. Yucatán, México: SEP, DGETA ITA-2, pp. 1430.Google Scholar
Supplementary material: File

Castillo-Aguilar et al. supplementary material

Castillo-Aguilar et al. supplementary material

Download Castillo-Aguilar et al. supplementary material(File)
File 274 KB