Published online by Cambridge University Press: 13 March 2018
Drought stress ‘particularly at seedling stage’ causes morpho-physiological differences in wheat which are crucial for its survival and adaptability. In the present study, 209 recombinant inbred lines (RILs) from synthetic wheat (W7984)× ‘Opata’ (also known as SynOpRIL) population were investigated under well-watered and water-limited conditions to identify quantitative trait loci (QTL) for morphological traits at seedling stage. Analysis of variance revealed significant differences (P < 0.01) among RILs, and water treatments for all traits with moderate to high broad sense heritability. Pearson's coefficient of correlation revealed positive correlation among all traits except dry root weight that showed poor correlation with fresh shoot weight (FSW) under water-limited conditions. A high-density linkage map was constructed with 2639 genotyping-by-sequencing markers and covering 5047 cM with an average marker density of 2 markers/cM. Composite interval mapping identified 16 QTL distributed over nine chromosomes, of which six were identified under well-watered and 10 in water-limited conditions. These QTL explained from 4 to 59% of the phenotypic variance. Six QTL were identified on chromosome 7B; three for shoot length under water-limited conditions (QSL.nust-7B) at 64, 104 and 221 cM, two for fresh root weight (QFRW.nust-7B) at 124 and 128 cM, and one for root length (QRL.nust-7B) at 122 cM positions. QFSW.nust-7B appeared to be the most significant QTL explaining 59% of the phenotypic variance and also associated with FSW at well-watered conditions. These QTL could serve as target regions for candidate gene discovery and marker-assisted selection in wheat breeding.