Article contents
Retrotransposon-related genetic distance among inbred lines of sweet corn (Zea mays var. saccharata) and hybrid performance
Published online by Cambridge University Press: 17 November 2016
Abstract
Heterosis is a main force underlying the hybrid seed industry in maize. Our experimental approach consists of a correlation study between retrotransposon-related genetic distances between parental inbred lines and hybrid performance. The assumption is that, at least for certain traits, heterosis results from genome rearrangements, largely related to retrotransposon insertions and/or removals. Fifteen maize inbred lines and one F1 hybrid, representative of the genetic diversity among sweet corn and field corn lines were screened for polymorphism by retrotransposon microsatellite amplified polymorphism markers. DNA fingerprints served as row data for estimating genetic diversity of maize inbred lines and its correlation with the heterotic effect in their hybrids. A correlation between phenotypic and molecular distances was evident only at the level of individual inbred lines. Weak correlation between genetic distances and heterosis effect was observed for the average of all inbred lines. Phenotypic distances negatively correlated with heterosis for insertion height, diameter of the ear and number of kernel rows per ear. The relative contribution of each inbred line to heterosis in its derived hybrids was also estimated. Accordingly, we identified inbred lines with increased genetic distances that mostly add to the heterosis effect in their hybrids and that we recommend as prospective to be used in maize breeding programmes.
- Type
- Research Article
- Information
- Copyright
- Copyright © NIAB 2016
References
- 1
- Cited by