Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T13:02:32.418Z Has data issue: false hasContentIssue false

Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island

Published online by Cambridge University Press:  27 October 2009

Josef Elster
Affiliation:
Institute of Botany, Academy of Sciences of the Czech Republic and Faculty of Biological Sciences, University of South Bohemia, Trebon, Czech Republic
Alena Lukesová
Affiliation:
Institute of Soil Biology, Academy of Sciences of the Czech Republic, Ceské Budejovice, Czech Republic
Josef Svoboda
Affiliation:
Department of Botany, University of Toronto, Mississauga, Ontario, Canada
Jirí Kopecky
Affiliation:
Institute of Microbiology, Academy of Sciences of the Czech Republic, Trebon, Czech Republic
Hiroshi Kanda
Affiliation:
National Institute of Polar Research, Tokyo, Japan

Abstract

Cyanobacteria and eukaryotic algae were investigated during three seasons in 18 plots established across Sverdrup Pass valley of central Ellesmere Island, 79°N, Canada. The sites differed in altitude, substratum, and other characteristics. A high species diversity totalled 136 taxa. Cyanobacteria accounted for 52 and eukaryotic algae 84 species. In both groups, numerous species did not correspond to any taxa described. However, high diversity did not always coincide with high algal abundance or biomass. On older and stable landscapes, visible crusts developed, containing mostly cyanobacteria, fungi, and other microbial components. Considerable variation in algal diversity and abundance was found among the sites. Also the southern, granitic portion of the pass was richer in green algae compared to its northern, dolomitic portion where motile cyanobacteria were more prominent. These micro-autotrophs occupied the soil profile to a depth of 7 cm. Their highest density was not at the surface but at 3–4 cm depth. One plot was contaminated by windblown copper-rich dust from a nearby outcrop and soil here was poorest in content of photosynthetic pigments, suggesting a local heavy-metal toxicity.

Type
Articles
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, M. 1967. On some Antarctic terrestrial and subterranean algae from the Ongul Islands, Antarctica. Antarctic Research (Tokyo) 32: 7177.Google Scholar
Akiyama, M. 1970. Some soil algae from the Arctic Alaska, Canada and Greenland. Memoirs of the Faculty of Education, Shimane University 4: 5375.Google Scholar
Aleksandrova, V.D. 1988. The Arctic and Antarctic: their division into geobotanical areas. Cambridge and New York: Cambridge University Press.Google Scholar
Anagnostidis, K., and Komárek, J.. 1988. Modern approach to the classification system of cyanophytes, 3-Oscillatoriales. Archiv für Hydrobiologie Supplement 80/Algological Studies 50–53: 372472.Google Scholar
Auclair, A.N.D., and Bedford, J.A.. 1995. Recent shifts of annual net forest volume balance in boreal forest, and its simplifications for global carbon balance. In: Callaghan, T.V. (editor). Global change and Arctic terrestrial ecosystems. Brussels: European Commission (EUR 15519 EN) (Ecosystem Research Report 10): 181190.Google Scholar
Bailey, D., Mazurak, A.P., and Rosowski, J.R.. 1973. Aggregation of soil particles by algae. Journal of Phycology 9: 99101.CrossRefGoogle Scholar
Bergeron, J-F., and Svoboda, J.. 1989. Plant communities of Sverdrup Pass, Ellesmere Island, NWT. The Muskox 37: 7685.Google Scholar
Bischoff, H.W., and Bold, H.C.. 1963. Phycologicalstudies. IV. Some algae from Enchanted Rock and related algal species. Austin: University of Texas (University of Texas Publication 6318).Google Scholar
Bliss, L.C. 1977. General summary, Truelove Lowland ecosystem. In: Bliss, L.C. (editor). Truelove Lowland, Devon Island, Canada: high Arctic ecosystem. Edmonton: University of Alberta Press: 824.Google Scholar
Bliss, L.C, Svoboda, J., and Bliss, D.I.. 1984. Polar deserts, their plant cover and plant production in the Canadian high Arctic. Holarctic Ecology 7: 305324.Google Scholar
Broady, P.A. 1979a. The terrestrial algae of Signy Island, South Orkney Islands. British Antarctic Survey Scientific Reports 98: 1117.Google Scholar
Broady, P.A. 1979b. A preliminary survey of the terrestrial algae of the Antarctic Peninsula and South Georgia. British Antarctic Survey Bulletin 48: 4770.Google Scholar
Broady, P.A. 1979c. Quantitative studies on the terrestrial algae of Signy Island, South Orkney Islands. British Antarctic Survey Bulletin 47: 3141.Google Scholar
Broady, P.A. 1989. Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarctic Science 1: 215224.CrossRefGoogle Scholar
Broady, P.A. 1996. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation 5: 13071335.CrossRefGoogle Scholar
Cameron, R.E. 1972. Farther south algae and associatedbacteria. Phycologia 11: 133139.CrossRefGoogle Scholar
Cameron, R.E., Knox, A.D., and Morelli, F.A.. 1978. The role of algae in tundra soils. In: Tieszen, L.L. (editor). Vegetation and production ecology of Alaskan Arctic tundra. New York: Springer: 207227.CrossRefGoogle Scholar
Campbell, S.E., Seeler, J.-S., and Golubic, S.. 1989. Desert crust formation and soil stabilisation. Arid Soil Research and Rehabilitation 3: 217228.CrossRefGoogle Scholar
Chambers, M.J.G. 1967. Investigations of patterned ground at Signy Island, South Orkney Islands: III. Miniature patterns, frost heaving and general conclusions. British Antarctic Survey Bulletin 12: 122.Google Scholar
Chernov, Y.I. 1985. The living tundra. Cambridge and New York: Cambridge University Press.Google Scholar
Claridge, G.G.C., Campbell, I.B., Stout, J.D., and Dutch, M.E.. 1971. The occurrence of soil organisms in the Scott Glacier region, Queen Maud Range, Antarctica. New Zealand Journal of Science 14: 306312.Google Scholar
Crawford, R.M.M., Chapman, H.M., Abbot, R.J., and Balfour, J.. 1993. Potential impact of climatic warming on Arctic vegetation. Flora 188: 367381.CrossRefGoogle Scholar
Davey, M.C. 1988. Ecology of terrestrial algae of the fellfield ecosystems of Signy Island, South Orkney Islands. British Antarctic Survey Bulletin 81: 6974.Google Scholar
Davey, M.C. 1989. The effect of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology 10: 2936.CrossRefGoogle Scholar
Davey, M.C. 1991. The seasonal periodicity of algae on Antarctic fellfield soils. Holarctic Ecology 14 (2): 112120.Google Scholar
Davey, M.C., and Clarke, K.J.. 1991. The spatial distribution of microalgae on Antarctic fellfield soils. Antarctic Science 3: 257263.CrossRefGoogle Scholar
Davey, M.C, and Rothery, P.. 1992. Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar Biology 12 (6–7): 595601.CrossRefGoogle Scholar
Dorogostaiskaya, E.V. 1959. On the problem of soil algae in the far north. Botanicheskii Zhurnal 44: 312321.Google Scholar
Dorogostaiskaya, E.V., and Novichkova-lvanova, L.N.. 1967. On the changes in the algal flora of tundra soils resulting from their reclamation. Botanicheskii Zhurnal 52: 461468.Google Scholar
Dorogostaiskaya, E.V., and Sdobnikova, N.V.. 1973. Pochvennye vodorosli tundr zapadnogo Taimyra [Soil algae of the western Taimyrtundras]. In: Biogeotsenozy Taimyskoi Tundry i ikh Produktivnost [Biocenoses of Taimyrtundra and their productivity. Leningrad: Nauka: II, 128138.Google Scholar
Elster, J., and Svoboda, J.. 1996. Algal diversity, seasonality and abundance in, and along glacial stream in Sverdrup Pass, 79°N, central Ellesmere Island, Canada. National Institute of Polar Research Memoirs Special Issue 51: 99118.Google Scholar
Elster, J., Svoboda, J., Komárek, J., and Marvan, P.. 1997. Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79°N, central Ellesmere Island, Canada. Archiv für Hydrobiologie Supplement/Algological Studies 85: 5793.CrossRefGoogle Scholar
Ettl, H. 1978. Xanthophyceae. 1. Teil. In: Süsswasserflora von Mitteleuropa. Stuttgart and New York: Gustav Fischer Verlag: vol 3.Google Scholar
Ettl, H., and Gartner, G.. 1995. Syllabus der Boden-, Luft und Flechtenalgen. Stuttgart, Jena, New York: Gustav Fischer Verlag.Google Scholar
Freedmann, B., Hill, N., Svoboda, J., and Henry, G.H.R.. 1994a. Seed banks and seedling occurrence in a high-Arctic oasis at Alexandra Fiord, Ellesmere Island, Canada. In: Svoboda, J., and Freedmann, B. (editors). Ecology of a polar oasis, Alexandra Fiord, Ellesmere Island, Canada. Toronto: Campus University Publications: 195200.Google Scholar
Freedmann, B., Svoboda, J., and Henry, G.H.R.. 1994b. Alexandra Fiord: an ecological oasis in the polar desert. In: Svoboda, J., and Freedmann, B. (editors). Ecology of polar oasis, Alexandra Fiord, Ellesmere Island, Canada. Toronto: Campus University Publications: 19.Google Scholar
Geitler, L. 1932. Cyanophyceae. In Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14.Google Scholar
Gilmore, A.M., and Yamamoto, H.Y.. 1991. Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. Journal of Chromatography 543: 137145.CrossRefGoogle Scholar
Gollerbakh, M.M., and Shtina, E.A.. 1969. Soil algae. Leningrad: Nauka.Google Scholar
Hansson, L. 1988. Chlorophyll a determination of periphyton on sediments: identification of problems and recommendation of method. Freshwater Biology 20: 347352.CrossRefGoogle Scholar
Hirano, M. 1968. Desmids of Arctic Alaska. Contributions from the Biological Laboratory of Kyoto University 21: 153.Google Scholar
Hoffmann, L. 1989. Algae of terrestrial habitats. Botanical Review 55: 77105.CrossRefGoogle Scholar
Jensen, J., Adare, K., and Shearer, R. (editors). 1997. Canadian Arctic contaminants assessment report. Ottawa: Department of Indian and Northern Development.Google Scholar
Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research 25 (4): 308315.CrossRefGoogle Scholar
Komárek, J., and Anagnostidis, K.. 1986. Modern approach to the classification system of cyanophytes, 2-Chroococcales. Archiv für Hydrobiologie Supplement 73/Algological Studies 43: 157226.Google Scholar
Komárek, J., and Anagnostidis, K.. 1989. Modern approach to the classification system of cyanophytes, 4-Mostocales. Archiv für Hydrobiologie Supplement 82/Algological Studies 56: 247345.Google Scholar
Komárek, J., and Fott, B.. 1983. Chlorococcales. In: Hubert-Pestalozzi, G. (editor). Das Phytoplankton des Süsswassers. Stuttgart: Schweizebart.Google Scholar
Krammer, K., and Lange-Bertalot, H.. 1986. Bacillariophyceae, Naviculaceae. In: Süsswasserflora von Mitteleuropa. Stuttgart and New York: Gustav Fischer Verlag: 2/1: 1876.Google Scholar
Krammer, K., and Lange-Bertalot, H.. 1991a. Centrales, Fragilariaceae, Eunotiaceae. In: Süsswasserflora von Mitteleuropa. Stuttgart and New York: Gustav Fischer Verlag: 2/3: 1576.Google Scholar
Krammer, K., and Lange-Bertalot, H.. 1991b. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. In: Süsswasserflora von Mitteleuropa. Stuttgart and New York: Gustav Fischer Verlag: 2/4: 1437.Google Scholar
Lange-Bertalot, H. 1993. 85 Neue Taxa und über 100 weitere neue definierte Taxa erganzend zur Süsswasserflora von Mitteleuropa Vol 2/1–4. Bibliotheca Diatomologica 27: 1454.Google Scholar
Leawitt, P.R., Vinebrooke, R.D., Donald, D.B., Smol, J., and Schindler, D.W.. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388: 457459.Google Scholar
Lévesque, E. 1997. Plant distribution and colonization in extreme polar deserts, Ellesmere Island, Canada. Unpublished PhD thesis. Toronto: Department of Botany, University of Toronto.Google Scholar
Lévesque, E., Henry, G.H.R., and Svoboda, J.. 1997. Phenological and growth responses of Papaver radicatum along altitudinal gradients in the Canadian high Arctic. Global Change Biology 3 (Supplement 1): 125145.CrossRefGoogle Scholar
Lokhorst, G.M. 1996. Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Crypt. Studies 5: 1132.Google Scholar
Maxwell, J.B. 1981. Climatic regions of the Canadian Arctic islands. Arctic 34 (3): 225240.CrossRefGoogle Scholar
Marker, A.F.H., Crowther, C.A., and Gunn, R.J.M.. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Ergebnisse der Limnologie 14: 8890.Google Scholar
McLean, A.L. 1918. Bacteria of ice and snow in Antarctica. Nature 102: 3539.CrossRefGoogle Scholar
Mortensen, L.M. 1995. Effects of elevated CO2 concentrations on growth of subalpine plant species in a controlled environment and in open-top chambers. In: Callaghan, T.V. (editor). Global change and Arctic terrestrial ecosystems. Brussels: European Commission (EUR 15519 EN) (Ecosystem Research Report 10): 163170.Google Scholar
Murray, J.L., and Svoboda, J.. 1989. Available nitrogen and phosphorus content in streams feeding wet sedge meadows at Sverdrup Pass, Ellesmere Island, NWT. The Musk-ox 37: 5459.Google Scholar
Novichkova-lvanova, L.N. 1972. Soil and aerial algae of polar desert and Arctic tundra. In: Wielgolaski, F.E., and Rosswall, T. (editors). I.B.P. tundrabiome: proceedings of the 4th international meeting on the biological productivity of tundra. Stockholm: I.B.P. Tundra Steering Committee: 5261.Google Scholar
Ohtani, S., Aklyama, M., and Kanda, H.. 1991. Analysis of Antarctic soil algae by the direct observation using the contact slide method. Antarctic Record 35 (3): 285295.Google Scholar
Parker, B.C., Boyer, S., Allnutt, F.C.T., Seaburb, K.G., Wharton, R.A., and Simmons, G.M. Jr 1982. Soil from the Pensacola Mountains, Antarctica: physical, chemical and biological characteristics. Soil Biology and Biochemistry 14: 265271.CrossRefGoogle Scholar
Raillard, M., Murray, J.L., and Svoboda, J.. 1992. Forage use by muskoxen in high Arctic sedge meadows. The Musk-ox 39: 189195.Google Scholar
Ryan, P.G., Watkins, B.P., Smith, R.I.L., Dastych, H., Eicker, A., Foissner, W., Heatwole, H., Miller, W.R., and Thompson, G.. 1989. Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species lists. South African Journal of Antarctic Research 19: 1020.Google Scholar
Svoboda, J., and Freedman, B. (editors). 1994. Ecology of a polar oasis, Alexandra Fiord, Ellesmere Island, Canada. Toronto: Campus University Publications.Google Scholar
Svoboda, J., and Henry, G.H.R.. 1987. Succession in marginal Arctic environments. Arctic and Apine Research 19: 373384.CrossRefGoogle Scholar
Tailing, J.F., Marker, A.F.H., and Toms, P.. 1978. Chlorophyll content. In: Department of the Environment. Analysis of raw, potable and waste water. London: HMSO.Google Scholar
Tedrow, J.C.F. 1977. Soils of the polar landscapes. New Brunswick: Rutgers University Press.Google Scholar
Tedrow, J.C.F. 1991. Pedogenic linkage between the cold desert of Antarctica and the polar desert of the high Arctic. Contributions to Antarctic Research II 53: 117.Google Scholar
Tikhomirov, B.A. 1974. Peculiarities of the biosphere in the extreme north. Priroda 11: 3040.Google Scholar
Walton, D.W.H. 1982. The Signy Island terrestrial reference sites. XV. Microclimate monitoring, 1972–4. British Antarctic Survey Bulletin 55: 111126.Google Scholar
Wynn-Williams, D.D. 1992. Epifluorescence image analysis of the 3D structure of phototrophic microbial biofilms at Antarctic soil surface. Microbiology 4: 5357.Google Scholar
Wynn-Williams, D.D. 1993. Microbial processes and initial stabilisation of fellfield. In: Miles, J., and Walton, D.W.H. (editors). Primary succession on land. Oxford: Blackwell Scientific Publications (Special Publication 12 of The British Ecological Society): 1732.Google Scholar